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Preface

All of us grow up with certain basic ideas concerning space, time,
and matter. These include:

* we all inhabit the same three-dimensional space;

* time passes equally quickly for everyone;

* two events occur either simultaneously, or one before the other;

* given enough power, there is no limit to how fast one can travel;

* matter can be neither created nor destroyed;

* the angles of a triangle add up to 180◦;

* the circumference of a circle is 2 × the radius;

* in a vacuum, light always travels in straight lines.

Such notions appear to be little more than common sense. But be
warned:

Common sense consists of those layers of prejudice laid down in the

mind before the age of eighteen.
Albert Einstein

In fact, Einstein’s theory of relativity challenges all the above
statements. There are circumstances in which each of them can be
shown to be false. Startling as such findings are, it is not difficult
to retrace Einstein’s thinking. In this book we shall see how,



starting from well-known everyday observations, coupled with the
results of certain experiments, we can logically work our way to
these conclusions. From time to time a little mathematics will be
introduced, but nothing beyond the use of square roots and
Pythagoras’ theorem. Readers able and wishing to follow up with a
more detailed mathematical treatment are referred to the further
reading list.

The theory is divided into two parts: the special theory of
relativity, formulated in 1905, and the general theory of relativity,
which appeared in 1916. The former deals with the effects on
space and time of uniform motion. The latter includes the
additional effects of acceleration and of gravity. The former is a
special case of the all-embracing general theory. It is with this
special case that we begin . . .
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Part 1

Special relativity

The principle of relativity and the speed of light

Imagine you are in a train carriage waiting at a station. Out of the
window you see a second train standing alongside yours. The
whistle blows, and at last you are on your way. You glide smoothly
past the other train. Its last carriage disappears from view,
allowing you to see the station also disappearing into the distance
as it is left behind. Except that the station is not disappearing; it is
just sitting there going nowhere – just as you are sitting in the
train going nowhere. It dawns on you that you weren’t moving at
all; it was the other train which moved off.

A simple observation. We all get fooled this way at some time or
other. The truth is that you cannot tell whether you are really on
the move or not – at least, not if we are talking about steady
uniform motion in a straight line. Normally, when travelling by
car, say, you do know that you are moving. Even if you have your
eyes shut, you can feel pushed around as the car goes round
corners, goes over bumps, speeds up or slows down suddenly. But
in an aircraft cruising steadily, apart from the engine noise and the
slight vibrations, you would have no way of telling that you were
moving. Life carries on inside the plane exactly as it would if it
were stationary on the ground. We say the plane provides an
inertial frame of reference. By this we mean Newton’s law of inertia
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applies, namely, when viewed from this reference frame, an object
will neither change its speed nor direction unless acted upon by an
unbalanced force. A glass of water on the tray table in front of you,
for example, remains stationary until you move it with your hand.

But what if you look out of the aircraft window and see the earth
passing by underneath? Does that not tell you that the plane is
moving? Not really. After all, the earth is not stationary; it is
moving in orbit about the sun; the sun itself is orbiting the centre
of the Milky Way Galaxy; and the Milky Way Galaxy is moving
about within a cluster of similar galaxies. All we can say is that
these movements are all relative. The plane moves relative to the
earth; the earth moves relative to the plane. There is no way of
deciding who is really stationary. Anyone moving uniformly with
respect to another at rest is entitled to consider himself to be at
rest and the other person moving. This is because the laws of
nature – the rules governing all that goes on – are the same for
everyone in uniform steady motion, that is to say, everyone in an
inertial frame of reference. This is the principle of relativity.

And no, it was not Einstein who discovered this principle; it goes
back to Galileo. That being so, why has the word ‘relativity’
become associated with Einstein’s name? What Einstein noticed
was that amongst the laws of nature were Maxwell’s laws of
electromagnetism. According to Maxwell, light is a form of
electromagnetic radiation. As such, it becomes possible, from a
knowledge of the strengths of electric and magnetic forces, to
calculate the speed of light, c, in a vacuum. The fact that light has
a speed is not immediately obvious. When you go into a darkened
room and switch on a lamp, the light appears to be everywhere –
ceiling, walls, and floor – instantly. But it is not so. It takes time for
the light to travel from the light bulb to its destination. Not much
time – it’s too fast to see the delay with the naked eye. According to
this law of nature, the speed of light in a vacuum, c, works out to
be 299,792.458 kilometres per second (or very slightly different in
air). And that’s what the speed is measured to be.

2



Sp
ecialrelativity

What if the source of light is moving? One might, for example,
expect light to behave like a shell being fired from a passing
warship where an observer on the seashore would expect the
speed of the ship to be added to the shell’s muzzle speed if being
fired in the forward direction, and subtracted if being fired to the
rear. The behaviour of light in this regard was checked at the
CERN laboratory in Geneva in 1964, using tiny subatomic
particles called neutral pions. The pions, travelling at 0.99975c,
decayed with the emission of two light pulses. Both pulses were
found to have the usual speed of light, c, to within the
measurement accuracy of 0.1%. So, the speed of light does not
depend on the speed of the source.

It also does not depend on whether the observer of the light is
considered to be moving or not. Take the case of a moving vessel
again. Having already established that light does not behave like a
shell being fired from a gun, we might expect it to behave like the
ripples on the water. If the observer were now someone aboard a
moving boat, the wave front would appear to move ahead of the
boat more slowly than the wave front going to the rear – because
of the motion of the boat and of himself relative to the water
(see Figure 1). If light were a wave moving through a medium

1. Ripples sent out by a boat appear to an observer on the boat to move
away more slowly in the forward direction than to the rear
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pervading all of space – a medium provisionally called the
aether – then, with the earth ploughing its way through the
aether, we ought to find the speed of light relative to us observers
travelling along with the earth to be different in different
directions. But in a famous experiment carried out by Michelson
and Morley in 1887, the speed of light was found to be the same in
all directions. Thus, the speed of light is independent of whether
either the source or the observer is considered to be moving.

So there we have it:

(i) The principle of relativity, which states that the laws of nature are

the same for all inertial frames of reference.

(ii) One of those laws allows us to work out the value of the speed of

light in a vacuum – a value which is the same in all inertial frames,

regardless of the velocity of the source or the observer.

These two statements came to be known as the two postulates (or
fundamental principles) of special relativity.

These facts had been common knowledge among physicists for a
long time. It required the genius of Einstein to spot that although
each of the two statements made sense when you thought about
them separately, they did not appear to make sense if you put the
two ideas together. It seemed as though if the first of them was
right, then the second must be wrong, or if the second was right,
the first must be wrong. If both were right – which we appear to
have established – then something very, very serious must be
amiss. The fact that the speed of light is the same for all inertial
observers regardless of the motion of the source or observer means
that our usual way of adding and subtracting velocities is wrong.
And if there is something wrong with our conception of velocity
(which is simply distance divided by time), then that in turn
implies there must be something wrong with our conception of
space, or time, or both. What we are dealing with is not some
peculiarity of light or electromagnetic radiation. Anything
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travelling at the same speed as that of light will have the same
value for its speed for all inertial observers. What is crucial is the
speed (and the implications for the underlying space and time) –
not the fact that we happen to be dealing with light.

Time dilation

To see what is amiss, imagine an astronaut in a high-speed
spacecraft and a mission controller on the ground. They both have
identical clocks. The astronaut is to carry out a simple experiment.
On the floor of the craft she is to fix a lamp which emits a pulse of
light. The pulse travels directly upwards at right angles to the
direction of motion of the craft (see Figure 2). There the pulse
strikes a bullseye target fixed to the ceiling. Let us say that the
height of the craft is 4 metres. With the light travelling at speed, c,
she finds that the time taken for this trip, t′, as measured on her
clock, is given by t′ = 4/c.

Now let’s see what this looks like from the perspective of the
mission controller. As the craft passes him overhead, he too
observes the trip performed by the light pulse from the source to
the target. According to his perspective, during the time taken for
the pulse to arrive at the target, the target will have moved
forward from where it was when the pulse was emitted. For him,

4

2. The astronaut arranges for a pulse of light to be directed towards a
target such that the light travels at right angles to the direction of
motion of the spacecraft
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3
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3. According to the mission controller on earth, as the spacecraft
passes overhead, the target moves forward in the time it takes for the
light pulse to perform its journey. The pulse, therefore, has to traverse
a diagonal path

the path is not vertical; it slopes (see Figure 3). The length of this
sloping path will clearly be longer than it was from the astronaut’s
point of view. Let us say that the craft moves forward 3 metres in
the time that it takes for the light pulse to travel from the source to
the target. Using Pythagoras’ theorem, where 32 + 42 = 52, we see
that the distance travelled by the pulse to get to the target is,
according to the controller, 5 metres.

So what does he find for the time taken for the pulse to perform
the trip? Clearly it is the distance travelled, 5 metres, divided by
the speed at which he sees the light travelling. This we have
established is c (the same as it was for the astronaut). Thus, for
the controller, the time taken, t, registered on his clock, is given
by t = 5/c.

But this is not the time the astronaut found. She measured the
time to be t′ = 4/c. So, they disagree as to how long it took the
pulse to perform the trip. According to the controller, the reading
on the astronaut’s clock is too low; her clock is going slower than
his.

And it is not just the clock. Everything going on in the spacecraft is
slowed down in the same ratio. If this were not so, the astronaut

6
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would be able to note that her clock was going slow (compared,
say, to her heart beat rate, or the time taken to boil a kettle, etc.).
And that in turn would allow her to deduce that she was moving –
her speed somehow affecting the mechanism of the clock. But that
is not allowed by the principle of relativity. All uniform motion is
relative. Life for the astronaut must proceed in exactly the same
way as it does for the mission controller. Thus we conclude that
everything happening in the spacecraft – the clock, the workings
of the electronics, the astronaut’s ageing processes, her thinking
processes – all are slowed down in the same ratio. When she
observes her slow clock with her slow brain, nothing will seem
amiss. Indeed, as far as she is concerned, everything inside the
craft keeps in step and appears normal. It is only according to the
controller that everything in the craft is slowed down. This is time
dilation. The astronaut has her time; the controller has his. They
are not the same.

In that example we took a specific case, one in which the astronaut
and spacecraft travel 3 metres in the time it takes light to travel
the 5 metres from the source to the target. In other words, the
craft is travelling at a speed of 3/5c, i.e. 0.67c. And for that
particular speed we found that the astronaut’s time was slowed
down by a factor 4/5, i.e. 0.8. It is easy enough to obtain a formula
for any chosen speed, v. We apply Pythagoras’ theorem to triangle
ABC. The distances are as shown in Figure 4. Thus:

AC2 = AB2 + BC2

AB2 = AC2 − BC2

c2t′2 = (c2 − v2)t2 (1)

t′2 = (1 − v2/c2)t2

t′ = t ∨ (1 − v2/c2)

From this formula we see that if v is small compared to c, the
expression under the square root sign approximates to one, and
t′ ≈ t. Yet no matter how small v becomes, the dilation effect is

7
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still there. This means that, strictly speaking, whenever we
undertake a journey – say, a bus trip – on alighting we ought to
readjust our watch to get it back into synchronization with all the
stationary clocks and watches. The reason we do not is that the
effect is so small. For instance, someone opting to drive express
trains all their working life will get out of step with those following
sedentary jobs by no more than about one-millionth of a second by
the time they retire. Hardly worth bothering about.

At the other extreme, we see from the formula that, as v
approaches c, the expression under the square root sign
approaches zero, and t′ tends to zero. In other words, time for the
astronaut would effectively come to a standstill. This implies that
if astronauts were capable of flying very close to the speed of light,
they would hardly age at all and would, in effect, live for ever. The
downside, of course, is that their brains would have almost come
to a standstill, which in turn means they would be unaware of
having discovered the secret of eternal youth.

So much for the theory. But is it true in practice? Emphatically,
yes. In 1977, for instance, an experiment was carried out at the
CERN laboratory in Geneva on subatomic particles called muons.
These tiny particles are unstable, and after an average time of
2.2 × 10−6 seconds (i.e. 2.2 millionths of a second) they break up
into smaller particles. They were made to travel repeatedly around
a circular trajectory of about 14 metres diameter, at a speed of
v = 0.9994c. The average lifetime of these moving muons was
measured to be 29.3 times longer than that of stationary
muons – exactly the result expected from the formula we have
derived, to an experimental accuracy of 1 part in 2000.

In a separate experiment carried out in 1971, the formula was
checked out at aircraft speeds using identical atomic clocks, one
carried in an aircraft, and the other on the ground. Again, good
agreement with theory was found. These and innumerable other
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experiments all confirm the correctness of the time dilation
formula.

The twin paradox

We have seen how the mission controller sees time passing slowly
in the moving spacecraft, while the astronaut regards her time as
normal. How does the astronaut see the mission controller’s time?

At first one might think that if her time is going slow, then when
she observes what is happening on the ground, she will perceive
time down there to be going fast. But wait. That cannot be right. If
it were, then we would immediately be able to conclude who was
actually moving and who was stationary. We would have
established that the astronaut was the moving observer because
her time was affected by the motion whereas the controller’s
wasn’t. But that violates the principle of relativity, i.e. that for
inertial frames, all motion is relative. Thus, the principle leads us
to the, admittedly somewhat uncomfortable, conclusion that if the
controller concludes that the astronaut’s clock is going slower than
his, then she will conclude that his clock is going slower than hers.
But how, you might ask, is that possible? How can we have two
clocks, both of which are lagging behind the other?!

A preliminary to addressing this problem is that we must first
recognize that in the set-up we have described we are not
comparing clocks directly side-by-side. Though the astronaut and
controller might indeed have synchronized their two clocks as they
were momentarily alongside each other at the start of the space
trip, they cannot do the same for the subsequent reading; the
spacecraft and its clock have flown off into the distance. The
controller can only find out how the astronaut’s clock is doing by
waiting for some kind of signal (perhaps a light signal) to be
emitted by her clock and received by himself. He then has to allow
for the fact that it has taken time for that signal to travel from the

10
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craft’s new location to himself at mission control. By adding that
transmission time to the reading of the clock when it emitted the
signal, he can then calculate what the time is on the other clock
now, and compare it with the reading on his own. It is only then
that he concludes that the astronaut’s clock is running slow. But
note this is the result of a calculation, not a direct visual
comparison. And the same will be true for the astronaut. She
arrives at her conclusion that it is the controller’s clock that is
running slow only on the basis of a calculation using a signal
emitted by his clock.

Which doubtless still leaves a nagging question in your mind,
namely ‘But whose clock is really going slow?’ With the set-up we
have described, that is a meaningless question. It has no answer.
As far as the mission controller is concerned, it is true that the
astronaut’s clock is the one going slow; as far as the astronaut is
concerned, it is true that it is the mission controller’s clock that is
going slow. And we have to leave it at that.

Not that people have left it at that. Enter the famous twin
paradox. This proposal recognizes that the seemingly
contradictory conclusions arise because the times are being
calculated. But what if the calculations could be replaced by direct
side-by-side comparisons of the two clocks – at the end of the
journey as well as at the beginning? That way there would be no
ambiguity. What this would require is that the spacecraft, having
travelled to, say, a distant planet, turns round and comes back
home so that the two clocks can be compared directly. In the
original formulation of the paradox it was envisaged that there
were twins, one who underwent this return journey and the other
who didn’t. On the traveller’s return one can’t have both twins
younger than each other, so which one really has now aged more
than the other, or are they still both the same age?

The experimental answer is provided by the experiment we
mentioned earlier involving the muons travelling repeatedly round
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the circular path. These muons are playing the part of the
astronaut. They start out from a particular point in the laboratory,
perform a circuit, and return to the starting point. And it is these
travelling muons that age less than an equivalent bunch of muons
that remain at a single location in the laboratory. So this
demonstrated that it is the astronaut’s clock which will be lagging
behind the mission controller’s when they are directly compared
for the second time.

So does this mean that we have violated the principle of relativity
and revealed which observer is really moving, and consequently
which clock is really slowed down by that motion? No. And the
reason for that is that the principle applies only to inertial
observers. The astronaut was in an inertial frame of reference
while cruising at steady speed to the distant planet, and again on
the return journey while cruising at steady speed. But – and it is a
big ‘but’ – in order to reverse the direction of the spacecraft at the
turn-round point, the rockets had to be fired, loose objects lying
on a table would have rolled off, the astronaut would be pressed
into the seat, and so on. In other words, for the duration of the
firing of the rockets, the craft was no longer an inertial reference
frame; Newton’s law of inertia did not apply. Only one observer
remained in an inertial frame the whole time and that was the
mission controller. Only the mission controller is justified in
applying the time dilation formula throughout. So, if he
concludes that the astronaut’s clock runs slow, then that will be
what one finds when the clocks are directly compared. Because
of that period of acceleration undergone by the astronaut, the
symmetry between the two observers is broken – and the paradox
resolved.

At least it is partially resolved. The astronaut knows that she has
violated the condition of remaining in an inertial frame
throughout, and so has to accept that she cannot automatically
and blindly use the time dilation formula (in the way that the
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mission controller is justified in doing). But it still leaves her with
a puzzle. During the steady cruise out, she is able, from her
calculations, to conclude that the controller’s clock was going
slower than her own. During the steady cruise home, she can
conclude that the controller’s clock will be losing even more time
compared to her own (the time dilation effect not being dependent
on the direction of motion – only on the moving clock’s speed
relative to the observer). That being so, how on earth (literally) did
the mission controller’s clock get ahead of her own? What was
responsible for that? Is there any way the astronaut could
calculate in advance that the controller’s clock would be ahead of
hers by the end of the return journey? The answer is yes; there is.
But we shall have to reserve the complete resolution of the twin
paradox for later – when we have had a chance to see what effect
acceleration has on time.

Length contraction

Imagine the spacecraft travelling to a distant planet. Knowing
both the speed of the craft, v, and the distance, s, from the earth
to that planet, the mission controller can work out how long the
journey should take as recorded on his clock. He finds t = s/u.
The astronaut can do the same kind of calculation. But we
already know that her time, t′, will not be the same as the
controller’s – because of time dilation. So, won’t she find that she
has arrived too soon – that she couldn’t possibly have covered a
distance, s, at speed, v, in the reduced time, t′? That would allow
her to conclude that it must be she who is really moving. This
would again violate the principle of relativity. Something is clearly
wrong. But what? It cannot be the speed, v; both observers are
agreed as to their relative speed. No, the resolution of the
dilemma lies with their respective estimates of the distance from
the earth to the planet. Just as the controller has his time, t, and
the astronaut has hers, t′, he has his estimate of the distance, s,
and she has hers, s′. How do they differ? In the same ratio as the
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times differed:

For the astronaut s′ = vt′

s′ = vt ∨ (1 − v2/c2)
But for the controller s = vt
Therefore s′ = s ∨ (1 − v2/c2) (2)

In other words, the astronaut is perfectly happy about her arrival
time at the planet. The reading on her clock is less than it is on the
controller’s because, according to her, she has not travelled as far
as he claims she has done. At a speed of 0.67c, the journey time
according to her is 4/5 of what he says it is because she holds that
she has travelled only 4/5 the distance. Thus her estimates of time
and distance are perfectly self-consistent – just as the controller’s
set of estimates are internally self-consistent.

In this way we come across a second consequence of relativity
theory. Not only does speed affect time, it also affects space. As far
as the astronaut is concerned, everything that is moving relative to
her is squashed up, or contracted. This applies not only to the
distance between earth and the planet, but to the shape of the
earth itself, and of the planet itself; they are no longer spherical.
All distances in the direction of motion are contracted, leaving
distances at right angles to that motion unaffected. This
phenomenon is known as length contraction.

And, of course, from the principle of relativity, what applies to the
astronaut, applies also to the controller. Distances moving relative
to him will be contracted. At the speed with which the craft is
travelling, 0.67c, the length of the moving craft will appear to the
controller to be only 4/5 of what it was when stationary on the
launch pad. And not just the craft, but all its contents – including
the astronaut’s body; she will appear flattened (see Figure 5). Not
that she will feel it. This is not the sort of flattening one gets when
a heavy weight is placed on the chest, for instance. It is not a
mechanical effect; it is space itself that is contracted. This kind
of contraction affects everything, including the atoms of the
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5. According to the mission controller, not only the speeding
spacecraft is length contracted but all its contents too

astronaut’s body; they will be reduced in size in the direction of
motion – and hence they do not need as much space to fit into her
body. So she feels nothing. Neither does she see that everything in
her craft is squashed. This is because the retina at the back of her
eye is squashed in the same ratio, so the picture of the scene cast
onto the retina takes up the same proportion of the available area,
and hence the signals to the brain are as normal. All this applies at
whatever speed she travels. Right up close to the speed of light, the
spacecraft could be flattened thinner than a CD, with the astronaut
inside and still not feeling a thing, and seeing nothing unusual.

One final point before leaving the topic of length contraction.
Figure 5 illustrates what the controller concludes about the
spacecraft as it speeds past him; it is length contracted. But is that
what he actually sees – with his eyes? Is that what a photograph of
the craft would look like? Here we must take account of the finite
time it takes light to travel from the different parts of the craft to
the lens – the lens of the controller’s eye or of a camera. If the craft
is approaching him, for instance, light from the nose cone has less
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distance to travel than light from the rear and so will take less
time. But what we see on the photograph is made up of light that
has all arrived at the same time. That being so, the light that makes
up the image of the rear of the craft must have been emitted earlier
than that which goes to make up the image of the nose cone. So
what he sees, and what is on the photograph he takes, is not what
the craft was like at a particular instant, but what different parts of
the craft looked like at different instances. The picture is distorted.
It so happens that the distortion makes it appear that the craft is
rotated – rather than contracted. It is only when one takes into
account the different journey times for the light making up
different parts of the picture that one can calculate (note that
word ‘calculate’ again) that the craft is not really rotated but is
travelling straight ahead, and that it is length contracted.

Loss of simultaneity

We have seen how relative speed brings about time dilation and
length contraction. There is a further way in which time is
affected. Recall the experiment where a pulse of light was fired at
right angles to the direction of motion of the spacecraft and its
arrival at a target placed on the ceiling of the craft was timed. Let
us imagine another experiment. This time the astronaut takes two
sources of pulsed light. Both sources are placed at the midpoint of
the craft. One is directed towards the front of the craft, and the
other towards the rear. They point at targets placed at equal
distances from their respective source. The two sources each emit
a pulse at the exact same instant (see Figure 6a). When do the
pulses arrive at their targets? The answer is obvious. The pulses
travel identical distances. They both travel at the normal speed of
light, c. So they arrive at their destinations simultaneously (see
Figure 6b). That is the situation as seen from the perspective of
the astronaut.

But what does the mission controller conclude when he observes
what is going on in the craft as it speeds past him? This is
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(a)

(b)

6. According to the astronaut, two pulses of light emitted at the same
time from the centre of the spacecraft will arrive at the ends of the craft
simultaneously

illustrated in Figure 7. Like the astronaut, he sees the two pulses
leave their sources at the same time – simultaneously (Figure 7a).
Next he sees the rear-going pulse strike the target at the back of
the craft. What about the forward-going pulse? According to the
controller, this pulse has not yet reached its target; it still has some

(a)

(b)

(c)

7. According to the mission controller, the two pulses emitted at the
same time from the centre of the spacecraft do not arrive at the ends of
the craft simultaneously

17



R
el
at
iv
it
y

way to go (Figure 7b). Why the difference? From his perspective,
the rear-going pulse has less distance to travel because the target
placed at the back of the craft is moving forward to meet its pulse.
In contrast, the forward-going pulse is having to chase after its
target which is tending to move away from it. Both pulses are
travelling at the same speed, c. So, the rear-going pulse will arrive
at its destination in a shorter time. The forward-going pulse
arrives some time later (Figure 7c).

Thus we find that whereas the two observers are agreed about
the simultaneity of events that occur at the same point in space
(the two pulses leaving from the midpoint of the craft), they
do not agree about the simultaneity of events separated by a
distance – the arrival of the pulses at the two ends of the craft. For
the astronaut the events were simultaneous; for the controller the
rear-going pulse arrived first. Indeed, one might add that from the
perspective of a third inertial observer in a spacecraft that was
overtaking the first one (and so from that perspective the first craft
would appear to be going backwards), it would appear that the
pulse directed at the front of the craft arrived first – before that
directed to the rear – which, of course, is quite the reverse of what
the controller on the ground concluded.

That appears to raise a particularly worrying problem – to
have two events such that observers disagree as to which one
happened first. Suppose, for example, the two events consisted
of (i) a boy throwing a stone, and (ii) a window breaking. Might
there not be a perspective from which the window breaks before
the stone has been thrown?! Fortunately this paradoxical scenario
is not possible. The order of two events that could be causally
related is never reversed; all observers perceive the cause to have
occurred first regardless of their motion relative to the events. As
you have probably heard (and we shall be dealing with this later),
nothing can travel faster than the speed of light. For event A to be
the cause of event B, it must be possible for a signal, or some other
kind of influence, to pass between them at a speed that does not
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exceed that of light, c. If that is the case, then observers, while
disagreeing as to the time interval between the two events, will
agree over the order in which the events occurred. Only when one
is dealing with two isolated events that can have no influence on
each other can there be disagreement over the order in which they
occur. So, in summary, where causality is concerned, there is no
paradox.

But that still seems to leave us with the question as to who is
right? Are events such as the arrival of the two pulses at the targets
in the spacecraft actually simultaneous or not? It is impossible to
say; the question is meaningless. It is as meaningless as asking
what the actual time of the journey from the earth to the planet
was, or what the actual length of the craft was. The concepts of
time, space, and simultaneity take on meaning only in the context
of a specified observer – one whose motion relative to what is
being observed has been defined.

Space–time diagrams

All this talk about the loss of simultaneity and the question of
causality can perhaps be made clearer with the help of a diagram
such as that shown in Figure 8. It is called a space–time diagram.
Ideally we would like to be able to draw a four-dimensional
representation of the three axes of space and one of time. But that,
of course, is impossible on a flat two-dimensional sheet of paper. So
we suppress two of the spatial axes by fixing our attention on events
occurring along only one of the spatial directions: the x′ axis.
This might, for example, be a line joining the front and back of the
spacecraft along which the light beams passed in that experiment
exploring simultaneity. The second axis shown on Figure 8 is
one representing time. In point of fact, it is customary to label this
ct′ rather than t′ as this enables both directions on the diagram
to be measured in the same units – units of distance. All events
occurring at time zero will be located somewhere along the x′ axis;
all events occurring at x′ = 0 will be found located on the ct′ axis.
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8. A space–time diagram showing the passage of the two light pulses
from the centre of the craft, O, to the two ends, A and B, according to
the astronaut. They both arrive at time T′

Let us first consider the loss of simultaneity. The x′ = 0 coordinate
represents the centre point of the spacecraft where the two light
sources were placed. The two dashed lines represent the
trajectories of the two light pulses, one going to the front of the
craft, the other to the rear. The point O represents the emission
of the pulses at x′ = 0, ct′ = 0. Points A and B mark the arrivals of
the two pulses at the two end walls of the craft, having travelled
equal distances in opposite directions. A and B are seen to share
the same time coordinate, T ′; in other words, they occur
simultaneously. This is the situation as viewed by the astronaut.

How ought we to represent the situation as it appears to the
mission controller? In Figure 9, the axes labelled ct and x are those
belonging to the controller’s coordinate system. All events
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ct'
ct
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9. A space–time diagram showing how the mission controller’s ct and
x axes are inclined to the astronaut’s ct′ and x′ axes. Although the
controller agrees with the astronaut that the two pulses leave the
centre of the craft simultaneously, at O, according to him, they arrive
at the two ends, A and B, at different times, T1 and T2

occurring at the position x = 0 (for the controller) will occur at
progressively different values of x′ (for the astronaut) because the
origin of the controller’s coordinate system is moving relative to
the spacecraft. Thus, the ct axis will be sloping compared to the ct′

axis. Likewise, the x axis slopes compared to the x′ axis. In other
words, the controller’s coordinate system is squeezed towards the
dashed line of the light pulse trajectory. According to the
controller, events occurring at the same time lie along one and the
same dotted line running parallel to the x axis. From which we can
immediately see how the time coordinate of point A is not the
same as that of point B; it is T1 in one case, and T2 in the other. The
arrival times of the pulses are not simultaneous for the controller –
the result we obtained earlier in a somewhat different manner.
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What about the question of causality? How is that illuminated by
the use of a space–time diagram? As briefly mentioned before, we
shall later be showing that nothing can travel faster than light. So,
on a space–time diagram, the trajectory of a moving object cannot
have a slope flatter than the dashed line representing the
trajectory of a light pulse. The line OL in Figure 10 represents a
possible path of an object such as a ball being rolled along the floor
of the spacecraft to the end wall. Likewise, LM is the path of the
ball as it returns to the centre of the craft having rebounded from
the end wall. The line ON, on the other hand, is not a possibility
for the ball; it would require a speed greater than that of light.

Consequently any event, R, occurring in Region I could have been
caused by something happening at point O. This is because it
would be physically possible for some influence to pass between
the two at a speed which did not exceed that of light. In the case of
point L, it was indeed causally connected to O, the influence
passing between them being the rolled ball. Likewise, an event at
P in Region II could be the cause of what happens at O. All
observers are agreed that P lies in the past of O, and that L and R
lie in the future of O.

But what of events, such as N, in Region III? There can be no
causal link between O and N because, as we have seen, no signal or
anything else could travel between the two of them sufficiently fast
for one to affect the other. It is events in Region III that are
ambivalent as to which one occurs first. Different observers can
arrive at different conclusions depending upon their state of
motion relative to the events being observed. But this is of no
consequence. The order of causally linked events is never in doubt.
All observers are agreed that cause is invariably followed by the
effect.

If you are wondering why there are two regions labelled
Region III, let me remind you that in this diagram we are
depicting only one of the three spatial dimensions. If we wish, we
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10. A space–time diagram illustrating the three regions in which
events may be found – absolute future, absolute past, and elsewhere –
relative to the event O
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could imagine a second spatial axis coming up out of the plane of
the paper. We could then imagine one of the Region IIIs being
rotated up out of the plane of the paper, about the ct′ axis, and
being overlaid on top of the other Region III. Thus, the two
Region IIIs are one and the same region. Similarly, we could
imagine the dashed line of the light pulse trajectory being rotated
about the ct′ axis, tracing out a cone. Indeed, this is referred to as
the light cone. Region I, contained within the light cone, is said to
lie in the absolute future of the point O; Region II, also contained
within the light cone, is in the absolute past of point O. As for
Region III, that carries the name: elsewhere(!)

Another common term used in connection with space–time
diagrams is world line. Again, it is a rather odd name. It refers to
the line traced out on a space–time diagram depicting the path of
an object or light pulse. In Figure 9, for example, the lines OA and
OB are the world lines of the two light pulses travelling from the
centre of the craft to the front and back. In Figure 10, the
combined path OLM represents the world line of the rolling ball.
As you sit reading this book you are yourself tracing out a world
line. If you are at home, you are considered stationary,
maintaining the same position coordinates. But time is passing.
Your world line will therefore be one that is parallel to your time
axis. If you are reading this book on a train, then to someone
observing your train passing by, you are changing both your
position coordinate and time coordinate. In that observer’s
reference frame, your world line will be inclined to his time axis
much like that of the rolling ball. As the train slows down, it will
become more closely parallel to the time axis.

Four-dimensional spacetime

All this talk about different observers having different perceptions
about space and time can be disorienting. One occasionally hears
people claiming that relativity theory can be summarized in the
phrase ‘all things are relative’ – implying that it’s a free-for-all and
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11. A pencil of length l has a projected length, p, at right angles to the
line of sight of an observer

anyone can believe anything they want! Nothing could be further
from the truth. Observers might not assign the same values for
time intervals and spatial distances, but they do agree about how
their respective values are related – through the formulae we have
derived for time dilation and length contraction. These are
determined with mathematical rigour.

Not only that, there is a measurement about which all inertial
observers can agree. Let me explain. In ordinary, everyday life we
are happy to accept that if someone were to hold up a pencil in a
room full of people, everyone would see something different.
Some would see a short-looking pencil, others a long one. The
appearance of the pencil depends on one’s viewpoint – whether
one is looking at it end-on or broadside-on. Do these differing
perceptions worry us? Do we find them disconcerting? No. This is
because we are all familiar with the idea that what we see is merely
a two-dimensional projection of the pencil at right angles to our
line of sight (see Figure 11). What one sees can be captured on a
photograph taken by a camera at the same location, and
photographs are but two-dimensional representations of objects
that actually exist in three spatial dimensions. Change the line of
sight and one gets a different projected length, p, of the true
length, l, of the pencil. We are happy to live with these different
appearances because we are aware that when one takes into
account the extension of the pencil in the third dimension – along
the line of sight – then all observers in the room arrive at the same
value for the actual length of the pencil – the length in three
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dimensions. Those who are viewing the pencil end-on, and
thus see a short projected length, have to add in a large
contribution for the component of length along the line of sight;
those viewing broadside-on with a long projected length have little
to add in the way of the component along their line of sight. Either
way, they arrive at the same value for the true length in three
dimensions.

We use this as an analogy for explaining our differing perceptions
of time and space. In 1908, three years after Einstein had
published his special theory of relativity, one of his teachers,
Hermann Minkowski (who once described his distinguished
student as ‘a lazy dog’), approached the subject from a different
angle and suggested a reinterpretation. He proposed that what
relativity was telling us is that space and time are much more alike
than we might suspect from the very different ways in which we
perceive and measure them. Indeed, we should stop thinking of
them as a three-dimensional space plus a separate
one-dimensional time. Rather, they were to be seen as a
four-dimensional spacetime in which space and time are
indissolubly welded together. The three-dimensional distance we
measure (with a ruler, say) is but a three-dimensional projection of
the four-dimensional reality. The one-dimensional time we
measure (with a clock) is but a one-dimensional projection of the
four-dimensional reality. These ruler and clock measurements are
but appearances; they are not the real thing.

The appearances will change according to one’s viewpoint.
Whereas in the case of the pencil being held up, a change of
viewpoint meant changing one’s position in the room relative to
the pencil, in spacetime, a change of viewpoint entails both space
and time and consists of a change in speed (which is spatial
distance divided by time). Observers in relative motion have
different viewpoints and therefore observe different projections of
the four-dimensional reality.
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What is being proposed here is that space–time diagrams, such as
Figures 8 to 10, are not simply to be regarded as graphs of spatial
distances plotted against time intervals. Where graphs are
concerned, one is free to plot any variable one chooses against any
other. Space–time diagrams do that, but they have an added
significance: they represent a two-dimensional slice taken through
a four-dimensional reality.

What is the nature of this four-dimensional reality? What are the
contents of spacetime? These will depend on the three dimensions
of space and the one dimension of time. In other words, they are
events. Here we must be careful. The word ‘event’ in normal usage
can take on a variety of meanings. The Second World War, for
example, might be referred to as an important event in world
history. ‘Event’ in this context includes everything that constituted
the war, spread over the period 1939–45 and wherever it
happened. In the present context, however, the word takes on a
quite specific, specialized meaning. Events are characterized by
their happening at a certain point in three-dimensional space and
at a certain instant of time. Four numbers then precisely locate the
position of the event in spacetime. One event might be the
spacecraft leaving earth at a certain time. A second event might be
the arrival of the craft at the distant planet at a different location
in space and at a later instant of time. Whereas in three-
dimensional space, we are familiar with the idea that the lines join
up contiguous spatial points, in spacetime, world lines join up
contiguous events.

Our two observers, the astronaut and the mission controller,
disagree about ‘appearances’, i.e. the difference in time between
the two events and also the difference in space between the two
events. However – and this is the crucial thing – they do agree
about the separation between these two events in four-
dimensional spacetime – as would all other observers, regardless
of their speeds. And it is the fact that all observers are agreed as to
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12. A length, l, can be expressed in terms of the components, x and y,
according to Pythagoras’ theorem

what exists in four dimensions that strengthens the idea that
spacetime is what is real.

So, what is the distance between events in four-dimensional
spacetime? As is well known, in a two-dimensional space, the
distance, l, between two points, A and B, can be written in terms
of the projections, x and y, along two axes at right angles to each
other (Figure 12). To do this, we use Pythagoras’ theorem once
more:

l2 = x2 + y2

l = ∨(x2 + y2)

This expression can be extended to cover a distance in three-
dimensional space by adding a third term relating to a third
axis, z, at right angles to the other two:

l = ∨(x2 + y2 + z2)

The ‘distance’ or ‘interval’, S, between two events in four-
dimensional spacetime can be represented through the inclusion
of a fourth term related to the fourth axis time, t. In order to get
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the units right (distance being measured in metres and time in
seconds), the fourth component has to be written ct, so that it too
can be measured in metres. A second complication is that, in order
for the expression for S to be the same for all observers, it has to be
defined in such a way that the time and spatial components
appear with different signs:

S = ∨(c2t2 − x2 − y2 − z2) (3)

This is the expression that all observers agree upon as the distance
between two events in four-dimensional spacetime.

If the first term on the right-hand side of equation 3 – the one
dependent on time – is dominant, then we say the interval is
time-like. S2 is positive and we are talking of a situation where the
later of the two events lies in the absolute future of the first event
(see Figure 10), and thus might be causally connected. If, on the
other hand, the spatial terms add up to more than the first term,
we say the interval is space-like. S2 is negative, and the later event
(if indeed it is the later of the two) lies in the region labelled
‘elsewhere’ in Figure 10. Separating the time-like and space-like
regions, we have the light cone. On this cone, S2 for any pair of
events is zero.

The idea of reality being four-dimensional is strange and
counter-intuitive. Even Einstein himself at first had difficulty
accepting Minkowski’s suggestion – though later he was won over
and declared ‘henceforth we must deal with a four-dimensional
existence instead of, hitherto, the evolution of a three-dimensional
existence’. Not that this is meant to imply that time has been
reduced to being merely a fourth spatial dimension. Although
it is indeed welded to the other three dimensions to form a four-
dimensional continuum, it yet retains a certain distinctiveness.
The light cone encircles the time axis, not the others. Absolute
future and absolute past are defined in relation to the time axis
alone.
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Acceptance of a four-dimensional reality is difficult because it is
not something that lends itself to easy visualizing – indeed,
forming a mental picture of four axes all mutually at right angles
to each other is impossible. No, we must dispense with mental
pictures and simply allow the mathematics to guide us.

One of the disconcerting features about four-dimensional
spacetime is that nothing changes. Changes occur in time. But
spacetime is not in time; time is in spacetime (as one of its axes).
It appears to be saying that all of time – past, present, and
future – exists on an equal footing. In other words, events that we
customarily think of as no longer existing because they lie in the
past, do exist in spacetime. In the same way, future events which
we normally think of as not yet existing, do exist in spacetime.
There is nothing in this picture to select out the present instant,
labelled ‘now’, as being anything special – separating past from
future.

We are presented with a world where it is not only true that all of
space exists at each point in time, but also all of time exists at each
point in space. In other words, wherever you are seated now
reading this book, not only does the present instant exist, but also
the moment when you began reading, and the moment when you
later decide you have had enough (perhaps because all this is
giving you a headache) and you get up and go off to make a cup
of tea.

We are dealing with a strangely static existence, one that is
sometimes called ‘the block universe’. Now there is probably no
idea more controversial in modern physics than the block
universe. It is only natural to feel that there is something
especially ‘real’ about the present instant, that the future is
uncertain, that the past is finished, that time ‘flows’. All these
conspire against acceptance of the idea that the past still exists
and the future also exists and is merely waiting for us to come
across it. Some leading physicists, while accepting that all
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observers are indeed agreed on the value of the mathematical
quantity we are calling ‘the distance, or interval, between two
events in four-dimensional spacetime’, nevertheless deny that we
must go that extra step and conclude that spacetime is the true
nature of physical reality. They maintain that spacetime is merely
a mathematical structure; that is all. They are determined to
retain the seemingly common-sense idea that the past no longer
exists, the future has yet to exist, and that all that exists is the
present. I suspect you are inclined to agree with them. But before
lending them your support, it is worth considering in more depth
what your alternative to the block universe might be.

It is all very well saying that all that exists is what is happening
at the present instant, what exactly do you mean by that?
Presumably you mean ‘me reading this book in this particular
location’. Fair enough. But I imagine you would also include what
is happening elsewhere (literally elsewhere) at the present instant.
For example, there might be a man in New York climbing some
stairs. At the present instant he has his foot on the first step. So,
you will add him, with his foot on that step, to your list of existent
entities. But now suppose there is an astronaut flying overhead
directly above you. Because of the loss of simultaneity of separated
events, he will disagree with you over what is happening
simultaneously in New York while you are reading this book. As
far as he is concerned, the man in New York, at the present
instant, has his foot on the second step – not the first step.
Moreover, a second astronaut flying in a spacecraft travelling in
the opposite direction to the first arrives at a third conclusion,
namely at the present instant the man in New York hasn’t even
reached the flight of stairs yet. You see the problem. It is all very
well saying that ‘all that exists is what is happening at the present
instant’, but nobody can agree as to what is happening at the
present instant. What exists in New York? A man with his foot on
the first step, or a man with his foot on the second step, or one
who has not yet reached the stairs? As far as the block universe
idea is concerned, there is no problem: all three alternatives in
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New York exist. The argument is merely over which of those three
events in New York one chooses to label as having the same time
coordinate as the one where you are. Relative motion means one
simply takes different slices through four-dimensional spacetime
as representing the events given the same time coordinate, ‘now’.

But of course, the block universe idea also has its problems. Where
does the perceived special nature of the moment ‘now’ come from,
and where do we get that dynamical sense of the flow of time? This
is a big unsolved mystery, and might remain that way for all time.
It does not seem to come out of the physics – certainly not from
the block universe idea – but rather from our conscious perception
of the physical world. For some unknown reason, consciousness
seems to act like a searchlight scanning progressively along the
time axis, momentarily singling out an instant of physical time as
being that special moment we label ‘now’ – before the beam moves
on to pick out the next instant to be so labelled.

But now we are venturing into the realms of speculation. Let’s get
back to relativity . . .

The ultimate speed

We have seen that the faster one travels, the more time slows
down. Reach the speed of light, and time comes to a halt. This
appears to raise the question as to what would happen if one were
to accelerate still further until one was travelling faster than the
speed of light. What would that do to time? Would one go back in
time? One hopes not. Such an eventuality could cause all kinds of
confusion. Suppose, for instance, one were to go back and
accidentally run over one’s grandmother – and this before she had
had a chance to give birth to your mother. Without you having a
mother, how did you get here in the first place!? Fortunately, this
cannot happen. As mentioned earlier, nothing can travel faster
than light. How does that come about?
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According to Newtonian mechanics, an object of mass, m, and
velocity, v, has momentum, p, defined by the expression:

p = mv.

To make the object go faster, one has to exert a force on it.
According to Newton’s second law of motion, the force, F , equals
the rate of change of the object’s momentum. With m being a
constant, this is the same as saying the force equals m times the
rate of change of the velocity, which is the acceleration, a. Thus,

F = ma

From this equation we can conclude that if one pushes long
enough and hard enough, the acceleration will continue
indefinitely, and there will be no limit to the velocity that can be
reached.

But this is not how it is in relativity. Just as we had to modify our
notions of time and length, so relativity theory further requires us
to redefine the concept of momentum. Accordingly, the relativistic
expression for momentum can be shown to be:

p = mv/ ∨ (1 − v2/c2) (4)

It is perhaps not altogether surprising that exactly the same
factor as appeared in the expressions for time dilation and length
contraction, namely ∨(1 − v2/c2), has appeared once again.
(The mathematics used in deriving this formula, though quite
straightforward, are somewhat too lengthy and tedious for
inclusion here.)

So how does this affect Newton’s second law? The idea of force
being the rate of change of momentum is retained, but with the
new expression for momentum. This in turn means that the
specific formulation of the law, F = ma, no longer applies.
Whereas before we dealt solely with the rate of change of v (i.e. a),
now we have to take account of the rate of change of
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v/∨(1 − v2/c2). If v is small, then essentially we have the classical,
Newtonian situation. But if v is close to c, then v2/c2 approaches 1,
the expression under the square root sign approaches zero, and
the momentum becomes infinitely large. Thus a constant force,
while continuing to increase the object’s momentum at a constant
rate, is now producing hardly any increase in the object’s velocity.
The velocity of light becomes the limiting case. Hence nothing can
be accelerated to a speed equal to that of light.

This in turn means that one can never catch up with a light beam.
If a spacecraft has headlights, then no matter how hard the
astronaut tries to catch up with the emitted light, the beam will
always be moving ahead of the craft. Indeed, the first germ of an
idea about relativity theory came to Einstein when contemplating
what it would be like to catch up with a light beam. He had in
mind a situation where one accelerated up to a speed where one
was cruising alongside a light beam, from which point of view, it
would presumably look stationary (in the same way as two
vehicles cruising alongside each other on the motorway at the
same speed appear stationary relative to each other). But Einstein
knew from Maxwell’s laws of electromagnetism that light, being a
form of electromagnetic radiation, had to be seen as travelling at
speed, c; it could not appear to be stationary. Travelling at speed,
c, is all part and parcel of what light is. So, not only does the
mission controller see the head light beam emitted from the craft
travelling at speed, c, relative to him, but the astronaut also will
see the beam travelling away from her at the same speed, c. And
this despite the fact that, according to the controller, the speed of
the beam relative to the craft – obtained in the usual way by
subtracting one from the other – is much less. Thus Einstein
concluded that there must be something seriously wrong with the
way we customarily handle the addition and subtraction of
velocities. Velocity being nothing more than spatial distance
divided by time, it immediately follows that if we are mistaken
over velocities, then we must also be mistaken over the underlying
concepts of space and time. And we have already seen where that
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realization eventually led: time dilation, length contraction, and
loss of simultaneity of separated events.

Does the fact that we cannot accelerate to the speed, c, rule out all
possibility of travelling faster than light? Strictly speaking, no. All
we are saying is that it is impossible to take the kind of matter we
are familiar with and accelerate it to superluminal speeds. But that
does not rule out the rather fanciful possibility of there being a
second type of matter, created at speeds exceeding that of light,
and which can travel only at speeds in the range c to infinity. Such
hypothetical particles have been given the name tachyons. Some
years ago they were the subject of much speculation. It was noted,
for example, that observers made of tachyon matter would
consider that speeds in the tachyon world were confined to be less
than c, and that it was our type of matter that would have speeds
lying in the range c to infinity. But enough of that; there is
absolutely no evidence for tachyons; they are but the subject of
unfounded speculation.

E =mc2

How are we to interpret the relativistic expression for momentum
(equation 4)? Some physicists prefer to think that there is nothing
to interpret as such; one merely replaces the v in the Newtonian
formulation with the more complicated one, v/∨(1 − v2/c2),
retaining the concept of an unchanging mass, m. That is probably
the currently most favoured position adopted by physicists.
However, there remains much to commend an earlier alternative
way of looking at things. According to this other viewpoint, the
new factor,

1/ ∨ (1 − v2/c2)

ought to be thought of as belonging to the mass. In other words,
mass increases with velocity, v, by this ratio. Such an idea requires
us to draw a distinction between the mass of the object when at
rest (its so-called rest mass), and its mass when moving.
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Consequently, the m in the formula should be replaced by the
symbol m0 referring to what the mass of the object is when it is at
rest, i.e. with v = 0. Thus

p = m0v/ ∨ (1 − v2/c2)

or

p = mv

where

m = m0/ ∨ (1 − v2/c2) (5)

m now being taken to denote the mass of the object at speed v.

To what are we supposed to attribute this mass increase? As the
object increases its speed so it also increases its energy; it acquires
kinetic energy – energy of motion. Energy is assumed to possess
mass. The object cannot take on the extra energy without at the
same time taking on the extra mass that goes with that kinetic
energy. Why is there a speed limit? Because the mass, m, of the
object eventually approaches infinity as v approaches c, and it
becomes impossible for a force, no matter what its magnitude and
for however long it operates, to significantly accelerate an object of
infinite mass.

We have arrived at this conclusion regarding there being a limiting
speed on the basis of theoretical reasoning. But is it borne out in
practice? To answer this, we go once more to the high-energy
physics laboratory at CERN on the outskirts of Geneva,
Switzerland, or to any of several such laboratories in the USA and
Europe. There we have machines called particle accelerators
(popularly, though somewhat erroneously, known as ‘atom
smashers’). Their function is to use powerful electric forces to
accelerate tiny subatomic particles – protons or electrons – to high
speed. In some accelerators the particles are guided by
electromagnets around a circular path – somewhat like an
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Olympic hammer-thrower whirling the hammer repeatedly
around his head as it goes faster and faster. And sure enough, it is
found that there is a speed limit – the speed of light. As one
continues to push on the particles, their speed creeps up ever
closer to that of light, but never quite reaches it – this despite the
momentum continuing to increase to the point where it is no
longer possible for the magnetic field to hold the particles on
course. That then becomes the energy limit of that particular
machine. To reach higher energies still, one must build a bigger
machine – to accommodate additional magnets. The largest to
date, sited at CERN, has a circumference of 27 kilometres.

Interpreting this result as being due to the mass of the particles
increasing, how heavy do they get? At an accelerator at Stanford,
California, they accelerate the lightest subatomic particles,
electrons, down a straight tube 3 kilometres long. By the time the
particles emerge at the other end, they have a mass 40,000 times
larger than when they began their journey. Having acquired such a
mass, what happens to it subsequently? As the electrons are
eventually brought to rest, they lose the energy they once
possessed, and, in the process, the mass associated with that
energy; they revert back to their normal rest mass.

At this point, an interesting question arises. We have seen how
energy – energy of motion – is associated with mass. But what
about the rest mass, m0, the particle possesses when it is stationary
and has no kinetic energy? If it is the case that one cannot have
energy without the mass that goes with the energy, does it not also
suggest that one cannot have mass without there also being
energy? If so, what kind of energy is associated with rest mass?
The answer is that it is a locked-up form of energy. It is the energy
which, under certain circumstances, can be partially released and
is the source of the power of nuclear bombs and of the sun.

Examining this in more detail, we note that, just as there is a
relativistic expression for the momentum of an object, so there is
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one for the total energy, E, of an object. It is Einstein’s most
famous equation:

E = mc2 (6)

or

E = m0c2/ ∨ (1 − v2/c2) (7)

The expression can be written

E = m0c2(1 − v2/c2)−1/2

Which, as you might know, can in turn be approximated by

E ≈ m0c2(1 + 1/2v2/c2 + . . .)

E ≈ m0c2 + 1/2m0v2 + . . .

The first term on the right-hand side represents the energy locked
up in the rest mass. The remaining terms represent the additional
energy acquired through the particle’s motion. The first of these
you will recognize as the familiar Newtonian expression for kinetic
energy, it being a good approximation to the relativistic kinetic
energy for values of v small compared to c. So what we are saying
is that the total energy of the object is the sum of the energy locked
up in the rest mass of the object, plus the kinetic energy.

In effect, the equation E = mc2 is telling us that a mass, m, is
always associated with an energy, E, and vice versa, an energy, E,
is always associated with an accompanying mass, m. (The c2 factor
is there in order to get the mass and energy units right; one cannot
have, say, E kilowatts = m kilograms!) Thus we can assert that a
plate that has been warmed in the oven will be heavier than when
it was cold. This is because, being warm, it now has more energy,
and therefore must have acquired the additional mass that goes
with that energy. Not that such a difference would be noticeable.
(So, if you drop the plate on removing it from the oven, the reason
will be more to do with the need to use oven gloves than its
increased weight.)
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But when dealing with powerful forces, such as those that bind
atomic nuclei together, it is altogether another story. In nuclear
processes, mass differences become significant. As you doubtless
know already, atoms consist of a heavy central nucleus surrounded
by very light electrons. The 92 elements that make up all the
matter we find in nature differ from each other in the number of
electrons they have (ranging from 1 to 92) and also in the size of
their nuclei. It is found that light nuclei in collision with each
other sometimes fuse together to form a heavier nucleus. As with
all bound systems, once the composite nucleus has formed it
would take energy to prise the components apart again. From
which we conclude that the two smaller nuclei must have had
more energy between them initially than when they were later
combined within the larger nucleus. The act of combining must,
therefore, have required the energy difference to be released. This
is done in the form of heat energy and/or the energy of light. Such
then is the process whereby the sun gets its energy – nuclear
fusion – the fusion of light nuclei to form larger nuclei.

The larger nucleus, possessing less energy than its earlier
separated components, must also have less mass than the
separated particles. Some of the energy originally locked up in the
form of rest mass energy has now been transformed into other
manifestations of energy, which subsequently get radiated out into
space. In this way, the sun converts 600 million tons of hydrogen
into 596 million tons of helium with the loss of 4 million tons of
rest mass every second.

What of nuclear fission? This is the process that powered the first
nuclear bombs dropped on Hiroshima and Nagasaki, and is the
source of energy for today’s nuclear power stations. It depends on
the fact that very large nuclei, such as uranium, tend to be
unstable. Their neutrons and protons can be packed more tightly
and efficiently if the big nucleus were to split to form smaller
nuclei and other fission products such as neutrons, electrons, and
light pulses. A typical process involves the isotope of uranium,
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235U, absorbing a neutron to become 236U, which then splits to
form 92Kr (krypton) and 141Ba (barium), together with three
neutrons and a release of energy – the energy of nuclear fission.
The neutrons so released can subsequently go on to get absorbed
by other 235U nuclei which also split. Hence a chain reaction is set
up. If the series of reactions occurs rapidly, there is an explosion
(the nuclear bomb); on the other hand, if activated in a controlled
manner, then one has a steady release of energy that can be
harnessed for peaceful purposes (nuclear power stations).

There is more energy to be had from the nuclear fusion of
hydrogen than from the fission of heavier nuclei. For this reason,
hydrogen bombs are more devastating than the earlier fission
bombs. Ever since the invention of the hydrogen bomb, attempts
have been made to harness the power of nuclear fusion for
peaceful purposes, one of the attractions being that fuel for such
processes would be readily available in the form of the deuterium
isotope of hydrogen freely available in sea water. One gallon of sea
water contains the equivalent energy of 300 gallons of petrol. A
further advantage of fusion over fission is that it would not result
in harmful radioactive waste materials which would then have to
be stored safely for enormous lengths of time. Unfortunately,
harnessing such power has proved very difficult. The fusing
materials have to be at an exceedingly high temperature,
100 million degrees Celsius – so hot it would melt any containing
vessel it came into contact with. The material has therefore to be
confined by magnetic fields which hold it away from the walls of
the container. This is a condition very hard to sustain. Attempts
continue, and doubtless one day will prove successful. But the
generation of power on a commercial scale still seems a long way
off. Current estimates suggest not before the year 2040.

We have seen how rest mass energy can be converted into other
forms of energy. Does the process work the other way round? Can,
say, kinetic energy be used to create rest mass? Yes, indeed. This is
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one of the principal aims of the particle accelerators we were
talking about just now. The particles are accelerated to high
energy and then made to collide with targets, or with a beam of
particles travelling in the opposite direction. One finds that the
collisions often produce new particles – particles that were not
there initially. The old adage ‘matter can neither be created nor
destroyed’ clearly does not hold. Mind you, it is not a case of
getting something for nothing. Adding up the kinetic energies of
all the final particles and comparing that with the energy
originally possessed by the projectile, one finds that some is
missing. This shortfall is accounted for by the amount of new rest
mass that has been created.

What kinds of particles can be created? In the first place, one
notes that one cannot create new matter in any quantities one
might like. There are certain fixed allowed masses they can have.
Thus one can produce a particle with mass 264 times that of the
electron, but not one that is 263 or 265 times the mass of the
electron. This is the neutral pion we encountered earlier when
discussing the speed of light emitted by a moving source. As we
mentioned there, this particle is unstable and decays into two light
pulses. Thus, in a short time the kinetic energy of the projectile
that was converted into the pion’s rest mass, reconverts into
energy in the form of light. The muon we earlier met in
connection with the test of time dilation is another of the new
particles arising out of high-energy experiments. It has a mass 207
times that of the electron and results from the decay of a charged
pion. The muon in turn decays into lighter particles, once again
with the release of energy.

Some of the newly created particles have properties not possessed
by the ordinary matter that makes up our world – properties with
exotic-sounding names such as strangeness and charm. This is the
realm of high-energy physics, or, as it is sometimes called,
fundamental particle physics. It is a world where almost
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everything is moving at speeds close to that of light, and where
special relativity reigns supreme. It is a world where physicists
look upon relativity as nothing more than a matter-of-fact,
everyday phenomenon – just plain common sense.

That concludes our study of special relativity. Referring back to
the Preface, you will see how we have already modified five of the
so-called common-sense ideas with which we started. What of the
others?
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Part 2

General relativity

The equivalence principle

So far, we have considered only cases where the motion was
steady; the observer was in an inertial frame of reference. Also we
took no account of gravity. We now move on to broaden our scope
to include the effects on time and space of accelerated motion and
of gravity. In this wider context we shall see that what we have
considered so far, the special theory of relativity, is but a special
case of the more general theory.

We begin with the simple observation that in a gravitational field,
such as that on the surface of the earth, all objects when released
at the same height above the ground accelerate towards the
ground at the same rate. Actually this is not immediately obvious.
In practice we have to contend with air resistance, which tends to
slow down some falling objects more than others. Whereas a
hammer falls directly down, a feather released at the same time
will float down more leisurely. But when the effects of air
resistance are excluded – as was the case when the astronauts on
the Apollo 15 mission performed this experiment on the moon –
the feather and a hammer arrive at the ground at the same instant.

This is no new insight; Galileo got there before the astronauts.
Though the story of him dropping objects from the leaning tower
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of Pisa is probably apocryphal, he did establish the universality of
free fall. He did this by carrying out experiments in which objects
were rolled down inclined planes. (One should perhaps point out
that although sky-divers, prior to activating their parachutes,
might claim to be in ‘free fall’, they are not. They are subject to air
resistance.) A statement of the principle of the universality of free
fall would go something like this:

If an object is placed at a given point in space and given an initial

velocity there, its subsequent motion is independent of its internal

structure or composition, provided it is subject only to gravitational

forces.

So, how are we to understand this? If the acceleration due to
gravity is g, then the gravitational force, F , on an object is given by

F = mG g

where mG is a property of the body called its gravitational mass.

But, in the Newtonian approximation, we have already seen that
the force is also given by the expression

F = mI a

where a is the acceleration, and mI is the inertial mass of the
object – a measure of the object’s inertia when it comes to
responding to forces. Eliminating F from these two equations
gives us

mG g = mI a

The universality of free fall says that the acceleration, a, of both
the hammer and feather are identical. Hence we can talk about the
acceleration due to gravity, and denote it by g. So, a is identical to
g, which means that

mG = mI

and we are able to speak of the mass of the object, previously and
more usually denoted by m. Experimental tests of the equality of
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the two types of mass have been carried out to an accuracy of one
part in one million million, i.e. 1 in 1012.

As said earlier, this has been a well-known fact for a long time.
The genius of Einstein was that, yet again, he spotted that there
was something strange going on, which others had overlooked.
With special relativity he had noted that there was something
odd about trying to reconcile the well-known principle of
relativity with the equally well-known fact that the speed of
light, derived from Maxwell’s laws of electromagnetism, was a
constant. Now Einstein found himself puzzled by the fact that
these apparently two distinct types of ‘mass’ had the same value.
In effect, he was asking how the gravitational attraction ‘knew’
how hard it had to pull on two very dissimilar objects in order to
make them accelerate at exactly the same rate. In any case, why
would gravity want to accelerate them at the same rate? What
was the point of that? In this way, he was led to the conclusion
that there must be some very close and subtle connection
between gravity, on the one hand, and acceleration, on the
other.

To see what this connection might be, let us imagine dropping the
hammer and feather in a lift – a lift being a reference frame that
can easily be accelerated in the vertical direction. Suppose at the
instant the objects are released, the cable of the lift is severed so
that the lift itself falls. The lift would accelerate in exactly the same
way as the two dropped objects. They all fall together, meaning
that their relative positions do not change. To an observer in the
lift, on releasing the feather and the hammer, they would stay
where they were relative to himself. They would not end up on the
floor. In other words, it would appear to the observer that gravity
had been switched off. The contents of the lift would be
‘weightless’. (We are assuming that he knows that an emergency
brake will eventually come into action, which is why he is able to
concentrate on more esoteric physics problems rather than his
own safety.)

45



R
el
at
iv
it
y

The idea of weightlessness is more familiarly encountered in
the context of astronauts cruising in outer space. It is commonly
believed that they are weightless because they are so far out into
space that they have gone beyond the pull of gravity exerted by
the earth and sun. This is quite wrong. Weightlessness can be
experienced while the astronaut’s craft is in orbit about the earth.
The fact that the craft travels round in an orbit, rather than going
off into space in a straight line, immediately tells us that the
craft – and the astronaut inside the craft – are being pulled on by
the force of gravity exerted by the earth. No, the weightlessness
condition arises because the craft is in a state of free fall under
the influence of the earth’s gravity – just like the observer in the
dropping lift. The reason the craft does not crash down on the
surface of the earth is because the earth’s gravitational attraction
is all being used up simply converting normal straight line motion
into the orbital motion we observe; there is none left over, so to
speak, to pull the astronaut down on to the earth’s surface.
Hence the astronaut appears to ‘float weightless’ around the
orbit.

Similarly, one can create an artificial ‘gravity force’ by suitably
accelerating. Suppose, for example, with the spacecraft cruising
and not requiring attention, the astronaut decides to take a nap.
While she is asleep, the rocket motors are activated. On awaking,
she feels a pull towards the rear of the craft; any loose objects are
seen to be drifting to the rear. What would she conclude? She can
hear the rocket motors purring away, so would know that one
possibility was that the craft was accelerating. But there is an
alternative. What if, when she was asleep, the craft had entered
the vicinity of some planet that was now positioned to the rear of
the craft, and the rockets were firing merely to maintain the craft’s
position relative to the planet? If that were the case, the craft
would not be accelerating – it would be stationary – and the
observed behaviour in the cabin would all be due to the planet’s
gravitational force. It would be impossible for the astronaut to
distinguish between the two alternatives: (i) a steady acceleration
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in outer space, or (ii) being stationary under the gravitational force
exerted by a nearby planet. This arises because of the weak
equivalence principle. This states that one cannot distinguish
motion under gravity and acceleration – they are equivalent. As
such, the weak equivalence principle is essentially a restatement of
the universality of free fall.

Why ‘weak’? Because there is another version which is called the
strong equivalence principle. This goes somewhat further and
asserts that all physical behaviour (not just motion) is the same
under gravity as for acceleration.

There is one caveat one ought to add. Strictly speaking, one can
tell the difference between acceleration and gravity. Take a look at
Figure 13a. The man in the lift is holding the two objects at arm’s
length, to the side. The force of gravity is directed towards the
centre of the earth. Because of their different positions relative to
the centre of the earth, the force on the hammer is in a slightly
different direction to that on the feather – the two directions
meeting at the earth’s centre. In contrast, if the observer were to be
out in space, far from any gravitating bodies, and accelerates, as in
Figure 13b, the paths of the two released objects would be parallel
to each other; they would not converge to a point. So for the two
objects, the acceleration and the gravity force are not quite in the
same direction. This means that were the lift’s cable to be severed,
the hammer and feather would not remain exactly stationary
relative to each other and to the lift, but would move very slightly
towards each other, such that were the lift to plummet through a
tunnel to the centre of the earth, the hammer and feather would
meet. This means that the equivalence principle (both the weak
and strong forms) should carry a health warning. The equivalence
of acceleration and gravity applies only if one chooses a small
enough region and makes one’s measurements to only a certain
limited accuracy. Over a larger region and/or to a higher precision,
one might begin to see the slight deviations we have been talking
about. One ought also to specify that the measurements should
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(a)

(b)

13. In case (a), the paths of two objects falling under gravity are
slightly inclined to each other as they are both directed towards the
centre of the earth. In contrast, for case (b), where there is acceleration
and no gravity, the paths of the objects are parallel

not be taken over too long a time. Two objects released from
slightly different heights within an orbiting (free fall) spacecraft
will, after a sufficiently long period of time, drift apart relative to
each other because the force of gravity (which falls off as the
inverse square of the distance from the centre of the earth) will be
slightly less for the object placed higher.

However, this is all something of a quibble. The important thing is
that because of the equivalence principle, if we wish to investigate
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14. A source of light placed at the rear of the spacecraft, emitting
regular pulses towards a target placed at the front

what the effects of gravity will be in a given situation, we can, if it’s
more convenient, think of the gravity being replaced by an
acceleration; if, on the other hand, we wish to investigate the
effects of acceleration, we can think of it as being replaced by an
equivalent gravitational force. The equivalence principle is
sometimes regarded as ‘the midwife’ of general relativity – a
theory that goes far beyond the principle itself.

The effects on time of acceleration and gravity

How gravity and acceleration affect time can be explored by once
again making use of a source of pulsed light and a target in the
spacecraft. This time, the source is placed at the rear of the
spacecraft, and the target at the front (see Figure 14). The source is
considered to emit a train of pulses at a regular frequency, f . With
the rocket engines off, the craft constitutes an inertial reference
frame. Under these circumstances, the pulses arrive at the target
at the same frequency rate as they were emitted, namely f .

Now suppose that the moment a pulse is emitted, the rocket
motors are fired so that the craft accelerates in the forward
direction with acceleration, a. If the distance to the target is h, it
will take time t = h/c for the light to reach the front of the craft.
During this time, the craft will have acquired a speed,

v = at = ah/c

This is the speed of the target when it receives the pulse compared
to that of the source when the pulse was originally emitted. In
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other words, the target is receiving the light when it is moving
away from the source at relative speed v.

Now, as is well known, when dealing with sound waves such as
those emitted by the siren on a moving ambulance, or light waves
from a moving source, the frequency at reception is different from
that at emission. This is the well-known Doppler shift. If the
source is moving away, then the received frequency is lower; if
moving towards, then it is higher. The standard formula
connecting the received frequency, f ′, and the frequency at
emission, f , is given by

f ′ = f/(1 ± v/c) (8)

At speeds close to that of light, this expression should be modified
to include the effect of time dilation on the moving source. But for
small speeds (such as the speed, v, achieved by the accelerating
craft in the time it takes for a pulse to traverse its length) this
formulism is sufficient. Rearranging it, the difference in frequency
observed at the target as it moves away from the original position
of the source can be written

( f ′ − f ) ≈ − f v/c

Using the expression we have derived for v, we finally get

( f ′ − f ) ≈ −fah/c2 (9)

Thus the frequency with which pulses are received at the front is
less than the frequency with which they were emitted at the rear.
In similar vein, if the source emitting the pulses were to be placed
at the front of the craft and the target at the rear, then the source
would appear to be moving towards the observer rather than away,
and the frequency with which the pulses are received would be
correspondingly higher than at emission.

With this in mind, we now consider what would happen if the
acceleration were to be replaced by an equivalent gravitational
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field. We suppose the craft to be positioned on its launch pad, held
down by the earth’s gravity (Figure 15). The rear wall of the craft is
now to be thought of as the ‘floor’ of the craft, and the front wall as
the ‘ceiling’. Again, regular pulses of light pass from the source
placed on the floor to the target on the ceiling. Having established
what the situation would be for an accelerating frame of reference,
we can immediately conclude, from the equivalence principle, that
for an observer positioned at the target, the frequency of the
pulses arriving there will be judged to be less than what a second
observer positioned near the source would judge to be the rate at
which pulses are emitted. According to the observer at the top, the
frequency with which he receives pulses must equal the rate at
which they are emitted. Consequently, he concludes that the
frequency of emission is less than that which the observer at the
bottom claims it to be. This is called the gravitational redshift, as
it indicates a shift in frequency to the lower, red end of the
spectrum. The significance of this is that if we were to regard the
pulsed source as a form of clock – emitting one pulse every second,
say – then the observer at the top concludes that the clock lower
down the gravitational field is going slow.

In similar vein, if the source were placed at the top of the craft and
the target at the bottom, then again from the equivalence
principle, we must conclude that the observer at the bottom will
receive the pulses at an enhanced rate (the equivalent accelerating
source coming towards him giving an increased Doppler-shifted
frequency). This would be a gravitational blueshift. Thus, the
observer on the floor agrees with the observer on the ceiling that
his clock is going slower than the other.

Note that this is a different kind of conclusion to the one we
arrived at over the time dilation phenomenon arising out of
relative motion. In that case, both observers believed it was the
other person’s clock that was going slow because the situation was
exactly symmetrical – there being no way to tell who was ‘really’
moving. This new situation is not symmetrical between the two
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observers. They are agreed as to which one is really higher up the
gravitational field and which one is lower down.

So what we find is that in a gravitational field, a clock – and hence
time itself – runs slower the lower down in the field it is. The
fractional shift in frequency is the same as we found for the case of
the accelerating spacecraft

( f ′ − f )/ f ≈ −gh/c2

Where h is again the difference in height between the two
locations, and we have now replaced the acceleration, a, of the
spacecraft by g, the equivalent acceleration due to gravity in this
uniform field.

Einstein came up with his prediction of a gravitational frequency
shift in 1911. The first experimental indications of a gravitational
redshift came from a study of the spectra emitted by white dwarf
stars. These have a mass of about that of the sun but they are very
compact – about 100 times smaller, thus giving rise to a strong
gravity field at the surface. More recently, in the 1960s, a team
from Princeton were able to measure the shift in the light coming
from the sun. But the most dramatic confirmation from
astronomical studies involve neutron stars. These have a mass of
1.4 times the solar mass, but radii of only about 10 kilometres.
Hence their surface gravity is colossal. In 2002, measurements by
the European Space Agency’s space telescope XMM-Newton were
made of the shift experienced by X-rays emitted by a neutron star
and passing through its centimetre-high atmosphere. The shift in
frequency was found to be 35%.

In 1960, using an ultra-precise method of measuring frequency,
Robert Pound and Glen Rebka experimentally verified the shift by
passing gamma radiation up and down a tower of height 22.5
metres. Using the values g = 9.81 m s−2, h = 22.5 m, and
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c = 3 × 108 m s−1, one can verify from the above formula that the
fractional frequency shift in this case was only −2.5 × 10−15. And
yet this tiny shift was verified to a precision of 1%.

The effect has also been verified by flying atomic clocks at high
altitude in an aircraft. Earlier, we mentioned how the special
relativistic time dilation formula was checked using aircraft.
In fact, the situation was a good deal more complicated than
was indicated there. Two effects come into play: one due to the
speed of the aircraft’s clock relative to the clock on the ground,
and the other – this new effect – due to the aircraft’s height above
the clock on the ground. These effects are comparable to each
other and have to be untangled. In practice, the two
experimenters, J. C. Hafele and R. E. Keating, in 1971 flew a clock
round the world in an easterly direction, while a second one did
the round trip in a westerly direction. The readings on these
clocks were compared with a clock at the US Naval Observatory.
Though the two aircraft were flying at the same speed relative to
the earth’s surface, because of the earth’s rotational speed they
were actually flying at different speeds relative to an inertial
observer, say, at the centre of the earth. Because of the earth’s
rotation, the clock on the ground was also moving relative
to the inertial observer – with a speed intermediate between
those of the two aircraft. For each aircraft journey a log was
kept of speed and altitude. This enabled calculations to be
made as to the expected loss or gain of the aircraft’s clock
compared to that on the ground. The clock travelling east should
have gained 144±14 nanoseconds due to the gravitational
blueshift, but lost 184±14ns due to time dilation, yielding a net
expected loss of 40±23ns. The experimental result was a loss of
59±10ns. Meanwhile, the westbound clock was expected to gain
179±18ns due to gravity, plus a further gain of 96±10ns due to
time dilation, yielding a net gain of 275±21ns. This was also in
good agreement with the experimental outcome, which was a gain
of 273±7ns.
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A further test of the gravitational blueshift was made in 1976
during a rocket flight to an altitude of 10,000 kilometres.
Correcting for the expected special relativistic time dilation, the
resulting blueshift agreed with theory to two parts in 104.

Thus the effects on time due to gravity are well established. Time
runs faster upstairs than it does downstairs. But before you get
ideas about doing boring jobs, like the ironing, upstairs so that it
will be over quicker, do recall that it is time itself that runs faster,
not just clocks. This means one’s thinking is faster upstairs, so the
boring job would still seem to take the same time according to you.
It is also worth noting that you will age faster and consequently
die quicker up there! Except, of course, the other thing to bear in
mind is that the effects we are talking about are negligibly small.
Even having climbed to the top of Snowdon, the time it takes to
drink a cup of tea in the café there is reduced by only one part in
1013 compared to what it would be at sea level.

Not that the gravitational redshift is always small. As we shall be
seeing later, the gravity associated with black holes is so powerful
as to be able to bring time to a complete standstill.

The twin paradox revisited

Knowing now about the effects of acceleration/gravity on clocks,
we revisit the twin paradox.

Earlier we described how the astronaut twin, having travelled to a
distant planet, reversed the motion of her craft so as to return to
base in order to carry out an unambiguous, side-by-side
comparison of the two clocks. She did this by firing the rocket
motors, so causing herself to undergo acceleration. In contrast,
during the period of the craft’s acceleration, the controller felt
nothing. This is how the symmetry between the astronaut and
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mission controller was destroyed. The controller was, therefore,
the only one who had obeyed the requirement of remaining
throughout in an inertial frame. For that reason, only his
calculation was valid, namely that it would be the astronaut twin
who would come back younger than himself.

Assuming the distance travelled between the earth and the planet
is h, and the speed of the craft is v, then the time, tc , recorded on
the controller’s clock for the complete round trip was

tc = 2h/v (10)

The reading on the astronaut’s clock, ta, according to the
controller, was time dilated:

ta = 2h(1 − v2/c2)
1/2/v (11)

The astronaut agrees with this assessment of the reading on her
clock – though for a different reason. According to her, the
distance between the earth and the planet (as they are seen to go
passed her) is length contracted by the factor (1 −v2/c2)

1/2. Thus
she is happy about the similarly reduced time on her clock.

The problem lies over the astronaut’s assessment as to what the
reading on the controller’s clock ought to be when she returns. She
argues that the earth and controller are moving at speed v relative
to her, so the controller’s clock will be time dilated. As far as this
goes, she is right. During those parts of the journey characterized
by steady motion, she, like the controller, is in an inertial reference
frame and is fully justified in regarding his clock as running more
slowly than her own. (Here we are ignoring any gravitational
effects due to the planet she is visiting.) But what of the period
during which the rockets are firing, the craft is slowing down, and
she is no longer in an inertial frame? This retardation amounts to
an acceleration in the direction towards earth. Having come to a
halt, she must accelerate back up to speed, v, this time towards
earth – a continuing period of acceleration in the same direction.
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We have seen how the effects produced by an acceleration are the
same as those that would be produced by an equivalent
gravitational field. We can, therefore, replace the craft’s
acceleration by an imaginary gravitational field, of uniform
strength, considered to be stretching all the way from the craft’s
present position at the planet to where the controller is on earth.
Equation 9, namely, ( f ′ − f ) ≈ −fgh/c2, gives the observed shift in
frequency, ( f ′ − f ), of light emitted by a source placed at a
distance, h, lower down in a gravitational field, g. This is the
gravitational redshift. If the source is placed higher up the field,
we lose the negative sign in equation 9 and have a blueshift. This
relation not only holds for the frequency of emitted light but also
for the rate of a clock placed at the same position. Bearing in mind
that in our case the controller’s clock is placed higher up in the
gravitational field compared to the observer (the astronaut), the
astronaut concludes the controller’s time is speeded up. Thus, for
the duration of the acceleration, the astronaut considers that the
controller’s clock is running faster than her own. This speeding up
of time is so pronounced, by the time she switches off the rocket
motors prior to cruising home, the controller’s clock, instead of
lagging behind, is now far ahead of her own. During the steady
cruise home, she once again regards the controller’s clock to be
running slower than hers because of the usual time dilation. As a
consequence, during the homeward journey her clock is tending to
catch up with controller’s. However, it turns out that the latter
gained so much time during the short acceleration period, it is still
ahead of hers when she arrives back at earth. In other words, the
stay-at-home twin is now older – which, of course, is the same
conclusion as that reached by the other twin. Hence there is no
paradox.

The readings on the two clocks, tc
′ and ta

′, at the various stages of
the journey, as judged by the astronaut, are illustrated in the graph
of Figure 16. Starting out from earth at point O, the craft reaches
the planet at point A with tc

′ lagging behind ta
′. Between A and B,

the rockets are fired, after which tc
′ is ahead of ta

′. During the
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16. The reading on the astronaut’s clock, ta ′, compared to the reading
on the controller’s clock, tc ′, as judged by the astronaut

section B to C, the gap between the two readings tends to close.
But at C, tc

′ is still ahead of ta
′.

One thing that might puzzle you is that, were the craft to
undertake a longer journey, say ten times longer, then the time
differences would be ten times greater. However, it takes exactly
the same acceleration to reverse the speed, v. How can the
identical acceleration produce ten times the change in the
controller’s clock reading? The answer is there in equation 9,
where we see that the frequency shift is proportional to the
distance, h. Make h ten times greater, and the frequency shift is
increased tenfold.

Another concern you might have is that we have not specified how
rapidly the acceleration should take place. Again, this is of no
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consequence. We know that v = gT, where g is the acceleration
and T is the time the acceleration operates in order to produce
that change of velocity, v. Were the acceleration to be halved, it
would have to operate for twice the time to produce the same
change in speed. Equation 9 shows that with half the value for g,
the frequency shift would be halved. But the acceleration, and
hence the enhanced running rate of the clock, will continue for
twice as long, so the overall change of the clock’s reading will be
the same as before.

It is easy to check out the matter quantitatively making use of the
Doppler shift method. (This is done in the rest of this section, but
if you prefer, you can skip it and move straight on to the next.)

Let us assume that the controller’s clock emits pulses of light at a
frequency of one per second (as reckoned by the controller). The
astronaut, by counting the pulses of light received from the other’s
clock, will be able to keep tabs on the other’s clock.

How many pulses will she have received by the time she gets
home?

As stated earlier, (equation 8), the standard formula connecting
the received frequency, f ′, and the frequency at emission, f , for
light emitted by a source travelling at speed v is given by

f ′ = f/(1 ± v/c)

At speeds close to that of light, this expression should be modified
to include the effect of time dilation on the moving source:

f ′ = f (1 − v2/c2)
1/2/(1 ± v/c)

f ′ = f (1 − v/c)
1/2(1 + v/c)

1/2/(1 ± v/c)

Thus, when the source is moving away from the observer,

f ′ = f (1 − v/c)1/2/(1 + v/c)1/2 (12a)
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And towards the observer,

f ′ = f (1 + v/c)
1/2/(1 − v/c)

1/2 (12b)

From equation 11 we see that according to the astronaut, the
outward journey takes ta/2 = h(1 −v2/c2)

1/2/v.

The number of pulses, no, received during this outward journey, is
the time ta/2, multiplied by the frequency of the received pulses
(expression 12a)

no = f ′ta/2 = f (1 − v/c)
1/2h(1 − v2/c2)

1/2/v(1 + v/c)
1/2

no = fh(1 − v/c)/v

Similarly, the number of pulses, nr , received during the return
journey is the time ta/2, multiplied by the frequency of the
received pulses (equation 12b)

nr = f ′ta/2 = f (1 + v/c)
1/2h(1 − v2/c2)

1/2/v(1 − v/c)
1/2

nr = f h(1 + v/c)/v

The total number of pulses received, n, is given by

n = no + nr = fh(1 − v/c)/v + f h(1 + v/c)/v = 2 f h/v

Given that the frequency, f , is one pulse per second, we arrive at
the total time on the controller’s clock as 2h/v.

This is in agreement with the controller’s own estimate, as given in
equation 10. In this way, the astronaut can anticipate the extent to
which the controller’s clock will be ahead of hers.

The bending of light

We have already seen, through the equivalence principle, how
acceleration and gravity produce equivalent effects on the motion
of disparate objects such as hammers and feathers. But what of
the motion of a light beam? We are accustomed to thinking of
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(a)

(b)

17. For a spacecraft in free fall, case (a), a pulse of light directed
laterally across the craft travels in a straight line to the target on the
opposite wall. For a craft undergoing acceleration, case (b), the pulse
appears to the astronaut to follow a curved path, striking the opposite
wall to the rear of the target

light travelling in straight lines, but is this the case under the
influence of gravity, or in an accelerating frame of reference?

To investigate this, imagine yet another experiment involving the
pulsed light source and target on board the spacecraft. This time,
the source and target are arranged to be exactly the way they were
in the first experiment. In other words, the beam of light is to be
fired at right angles to the direction of motion of the craft.

While the craft is considered stationary and far from any
gravitating source – or equivalently, if it is in free fall – it
constitutes an inertial reference frame. Under these
circumstances, the beam of light, as expected, travels in a straight
line to the target, see Figure 17a. But now suppose that, at the
moment the pulse leaves the source, the rockets are fired and the
craft accelerates forward. As far as the mission controller is
concerned, the pulse of light again follows exactly the same
path – a straight line in the same direction as before. But by the
time it reaches the far wall, the craft will have moved forward; the
bullseye of the target is no longer directly opposite where the
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source was when the pulse started its journey. In other words, the
controller will see it strike a point somewhat to the rear of where
the target is now.

Meanwhile, what does the astronaut see? This is illustrated in
Figure 17b. The pulse starts off in the direction of the target, but
then in order for it to strike the far wall to the rear of the target, it
must deviate from a straight line, following a curve.

Were we now to think of the acceleration as being replaced by an
equivalent gravitational field, where the rear wall of the craft is
once again regarded as the ‘floor’ and the nose cone as the ‘ceiling’,
the astronaut would conclude that the light pulse had ‘fallen’
towards the floor – much as an object thrown across the craft
would start out aiming at the target, but would fall towards the
floor and miss the bullseye.

From this observation, we would thus expect light rays to follow
curved trajectories in gravitational fields; the light would be bent.
Indeed, such was the prediction made by Einstein in 1915 while he
worked in Berlin during the First World War. News of his ideas got
out of Germany to the British scientist Arthur Eddington based in
Cambridge. Six months after the war ended, in May 1919,
Eddington verified Einstein’s theory through one of the most
famous experiments of all time. The idea was to note the normal
positions of the stars in a particular region of the night sky. Then
the positions were again measured when the sun was in that
region. Under the latter conditions, the starlight would have to
pass close by the sun to reach us and would therefore have to pass
through the gravitational field of the sun. The light would follow a
bent path and so, by the time it was detected, it would be coming
from a somewhat different direction from its original one. This in
turn would give the appearance that the position of the star had
shifted from where it was usually to be found, see Figure 18. Of
course, one problem in making this observation is that the sun’s
brilliance would normally make it impossible to see the stars. For
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18. The path of light from a distant star changes direction as it passes
the sun. By the time it reaches an observer, it appears to be coming
from a different part of the sky; the star’s apparent position has
changed

that reason, the observation was carried out during a total eclipse.
The effect being sought was extremely tiny – no more than a
deflection of 1.75 seconds of arc (a few ten-thousandths of a
degree). But Eddington successfully verified the prediction.

This, and later eclipse expeditions, were able to manage
measurements of the effect to no better precision than 20%. But
then during the period 1989–93, the European Space Agency’s
satellite Hipparchos was able to carry out high-precision
measurements of star positions. Because it was above the earth’s
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atmosphere, the stars were permanently visible, and there was no
need to await eclipses. The bending of light was confirmed to a
precision of 0.7%. Whereas the earth-bound measurements had
had to concentrate on starlight that just grazed the sun’s limb,
where gravity was at its strongest, and the bending effect was most
marked, Hipparchos was able to detect the bending of light even
for stars situated at 90◦ to the sun’s direction.

The bending of light gives rise to an interesting phenomenon
called gravitational lensing. Not just the sun but also a galaxy, or
indeed a cluster of galaxies, can act as a gravitational source
bending and distorting the light coming to us from a distant
luminous object lying beyond it. In 1979, an observation was made
of what appeared to be two identical quasars close to each other
(quasars being very bright distant sources of light located in
massive early-type galaxies). They turned out to be two images of
the same quasar. The light from this single source had been
distorted by a galaxy which lay along the line of sight to the quasar.
The intervening galaxy acted as a kind of lens, bending the
quasar’s light. If the source, the lensing galaxy, and ourselves were
exactly on the same line, then the light from the source would
bend uniformly around the galaxy producing a ring – sometimes
called the Einstein ring. But that is the ideal situation. Owing to
being somewhat off-line, and the lensing galaxy not being
spherically symmetric, one more normally sees distorted images
and multiple images. This is called strong lensing, and to date over
a hundred examples are known. In addition, one can get
microlensing where a single star acts as the lens for the light from
another more distant star lined up with it. In such cases, one sees
the light from the source suddenly brighten up for a while as it
goes past the line of sight to the intervening star, the latter acting
as a magnifying glass. Indeed, in 2004 such a process of
magnification revealed that the distant source star had a planet,
one-and-a-half times the size of Jupiter, orbiting it. This was the
first time an extra-solar planet had been found by this method.
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It should be noted in passing that Newton, on entirely different
grounds to those of Einstein, had much earlier predicted that light
would be bent in a gravitational field. He based his ideas on a
corpuscular theory of light whereby light was thought of as being
made up of a stream of tiny particles travelling at speed, c. Under
those circumstances, one would expect the particles to be attracted
towards the sun, thus producing a deflection. However, the
amount of the deflection comes out to be only a half of that which
Einstein’s theory predicts, and which is experimentally verified to
be the case. Not only that, but Newton’s corpuscular theory was at
odds with the wave theory for describing how light moves through
space.

Curved space

So, if Einstein did not regard light as a stream of particles being
attracted, much like any other particles, by the force of gravity,
what physical picture did he develop to try and understand what
was going on here?

We return to the dropping experiment involving the hammer and
feather. Given that they have different masses, we saw that the
earth’s gravity has to pull with different strengths to make them
accelerate towards the ground in exactly the same way. This raised
the question as to how gravity knew how hard to pull on each to
make them behave the same way, and in any case why would it
want them to behave like that?

We get the same thing happening when an astronaut goes for a
space walk. We consider the spacecraft to be orbiting the earth
with its engines off – it is in free fall. The astronaut steps out of the
craft and floats there alongside the craft. She too is in orbit about
the earth – more or less the same orbit as the craft. Again, the
gravity exerted by the earth is such as to produce exactly the same
behaviour in two very different objects. Instead of travelling in a
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straight line at constant speed, the force of gravity pulls on the
space walker and upon the craft in just the right way to make them
both go in a curved trajectory – the same trajectory.

Einstein’s response to this was to suggest that in the presence of a
gravitating body, the ‘natural’ motion of an object is not that of
remaining stationary or moving at constant speed in a straight
line. Instead, he proposed that near gravitating bodies such as the
earth, the space itself becomes distorted. It is curved in such a way
that the natural path followed by all objects is whatever path we
observe it to be: the orbit followed by the space walker and the
craft around the earth.

One way of thinking about this is to imagine a banked race track.
On such a track, two very different vehicles can cruise around with
little need for the driver to steer because the cars are induced to
follow the curved path by the way the track is banked at the
corners. The track is distorted or curved in such a manner that it is
no longer ‘natural’ for the vehicle to continue in a straight line. It
no longer requires a steering force to alter its direction of motion.
The ‘steering’ is provided by the shaped track.

So what Einstein is saying is that we do not need to invoke a
force – the gravity force – to keep the astronaut and the craft in
orbit about the earth. There is no force that needs to be fine-tuned
to keep objects of different mass on the same path. Instead, both
the astronaut and the craft are just following the natural path that
all objects will follow if they start out from the same position with
the same velocity. Thus Einstein replaced the notion of gravity
forces with a completely new conception – that of a curved
space.

It was simplicity itself. Provided, of course, one can get one’s mind
around the idea of a curved space! Not easy – especially if one has
been brought up to think of space as just another name for
‘nothing’. How can nothing be curved?
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The answer is that to a physicist, space is not nothing. Rather, it is
to be viewed as a smooth, uniform continuum. Crudely speaking,
it is like a very thin jelly (or jello in Americanese). When we later
consider Big Bang cosmology, we shall find that all the galaxy
clusters are moving away from each other. This is not because
they are spreading out into what was previously unoccupied
space – empty nothingness. No, it is more a case of space itself
expanding, and in the process, carrying the galaxies along with it
on a tide of moving space. Again, when it comes to the study of
quantum physics, one discovers that to the physicist space is
thought to be jam-packed with ‘virtual’ fundamental particles,
some of which pop into fleeting existence from time to time. That
is one effect. Another is that the electric charge on an electron, say,
repels the charges on the virtual electrons that make up the
vacuum close by, so pushing those virtual particles away.

Thinking in these terms, where space is not nothing but ‘stuff ’ (of
a sort), it becomes more plausible that the stuff could be distorted
and curved in some way so that the natural path to follow would
not necessarily be a straight line. And such curvature would be
expected to affect everything passing through that region of
space – including light. In our previous discussion of the bending
of light experiment, for example, we thought of light passing by
the sun as being attracted towards it by the force of gravity. This
new interpretation, involving curved space, suggests that Figure
18 might be replaced by something more like Figure 19.

The idea of a curved space is not in itself new. We are all familiar
with curved two-dimensional spaces. A two-dimensional space
might consist of a flat sheet. In such a plane we find that the
circumference of a circle, C , is given by the expression

C = 2r

where r is the radius. Another result is that the interior angles of a
triangle add up to 180◦. But we can have a situation where the
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19. A representation of the way light from a distant star is bent by the
curvature of space caused by the sun

surface takes the form of a sphere. In other words, the
two-dimensional space is curved. Doing geometry on such a
surface is very different from what it was on the flat. In Figure 20
we see that the circle formed by the equator has as its centre the
North Pole, P (not the centre of the sphere because we are
constricted to remaining on the two-dimensional surface). On this
surface, the equivalent of a straight line is the shortest distance
between two points (the configuration an elastic band would take
up if stretched between the two endpoints). Thus, ‘straight lines’
are arcs of great circles for the sphere. Accordingly, PA is a radius,
r, of the equatorial circle within the two-dimensional surface (not
the radius R from the centre of the sphere). The equator is a full
circle round the sphere, whereas the radius is but a quarter of a
full circle round the sphere. Thus on this surface we have the
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20. Geometry carried out on the surface of a sphere is different from
that on a flat surface

relationship for this particular circle

C = 4r

We see that the circumference of the circle is less than 2r.

Not only circles but also triangles are affected by curved geometry.
PAB is a triangle made up of three intersecting ‘straight lines’. The
sum of the interior angles for this triangle is seen to be three right
angles, i.e., 270◦ rather than the usual 180◦.

The surface of a sphere is but one kind of curved two-dimensional
space. Figure 21 shows another – one based on a saddle shape.
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21. The saddle is another shape where geometry carried out within its
surface is different from that for a flat surface

Here we find the interior angles of a triangle add up to less than
180◦, and the circumference of a circle comes out to be more than
2r.

Note that both the circles and triangles, on both types of curved
surface, were comparable in size to the overall size of the sphere or
saddle. Had we confined our attention to very small circles and
triangles we would have obtained quite different results. On the
very small scale even a curved surface tends to be pretty flat, in
which case the normal geometry for a flat surface holds at least
approximately, and that approximation improves the smaller the
scale.

So what we learn from this consideration of curved
two-dimensional surfaces is that we get different results from the
usual Euclidean flat case, though the smaller in size the figures we
use, the closer they approximate to the flat case. These results we
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22. Despite the fact that the surface of a cylinder looks ‘curved’, its
geometry is the same as that for a flat surface

carry over into a consideration of what it means to have a curved
three-dimensional space.

In the first place, it becomes impossible to visualize a curved
three-dimensional space. With two dimensions it was easy; we
had the third dimension into which we could visualize the
curvature going. But where is there a fourth spatial dimension to
accommodate the ‘bend’ of the three dimensions?

Actually, visualization can be misleading. Take a look at the
surface shown in Figure 22. Is it curved? In one sense, obviously
yes. It is a cylinder. But looks can be misleading. As far as the
geometry that goes on in that surface is concerned, it is the same as
flat geometry. After all, the cylinder could be made from bending a
flat sheet of paper (in a way that you cannot bend a flat sheet to
make a sphere or saddle). If you draw a circle or a triangle on a flat
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sheet, and then bend it to form a cylinder, the properties of those
figures remain exactly the same as before.

So forget about visualizing curvature. Instead, we define a space as
curved if the geometry carried out within that space differs from
Euclidean geometry. After all, flies crawling over the surface of the
sphere or saddle would not need to have a bird’s eye view of the
shape of the surface they were on in order to conclude that it was
curved. They could arrive at that conclusion simply by performing
measurements on triangles and circles within the surface itself.
And that is how one explores the geometry of three-dimensional
space – not by somehow positioning oneself outside the
three-dimensional space for an overall view, but by carrying out
measurements within the space itself.

From the light bending experiments, and from the orbiting
spacecraft and the space walking astronaut, we already know that
space gets curved on the scale affected by the earth, sun, and
galaxy. These are like scattered dimples on the broad surface that
makes up the totality of space. But are they dimples on a surface
which, overall, is flat, spherical, saddle-shaped, or what? We shall
return to this topic later when considering the universe in
general.

Earlier we saw how the presence of a gravitating body affects time
(the gravitational redshift). Now we see that it also affects space.
Bearing in mind how we were led by special relativity to conclude
that space and time constituted a four-dimensional spacetime, we
now conclude that we ought not to be thinking solely of a curved
space, but rather of curved spacetime. The time axis together with
the three spatial axes are all affected by the presence of the
gravitating body.

We spoke earlier of objects following ‘natural paths’ through
curved spacetime. The actual name given to such paths are
geodesics. A geodesic is the path followed by an object in free fall,
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that is to say, one that is not subject to any non-gravitational
forces, such as electric and magnetic influences (the gravitational
effects already being taken into account through the curvature of
spacetime). In other words, in general relativity, a geodesic takes
the place of the straight line in normal Euclidean geometry or in
special relativity. Thus, when the light from a star is bent round
the sun, it is following a geodesic.

What is the defining characteristic of a geodesic? In
three-dimensional Euclidean space, the analogous straight line is
defined as being the path having the shortest distance between two
points. In spacetime, a geodesic is defined as that path between
the two events characterized by having the maximum proper time.
Proper time is defined as the time that would be recorded on a
clock accompanying the object as it moves between the two points
in question. In Figure 23, we revisit the twin paradox (briefly this
time!). This shows the situation from the point of view of the
mission controller. O marks the departure of the astronaut from
earth; she travels to the distant planet, arriving at P. She turns
round and returns to earth, arriving at Q. The controller
meanwhile remains stationary and traces out world line OQ. We
have already established that by the time he and the astronaut are
reunited, his clock reads more than hers. In other words, his
proper time is greater than hers. And this will generally be true.
No matter what world line the astronaut traces out between the
two points O and Q – for example, the arbitrary path shown
passing through S – the reading on her clock will always be less
than that on his. She will have followed a world line characterized
by a proper time that is less than that of the controller. What is so
special about the controller’s world line that it should have the
maximum proper time? Only he remains in an inertial frame of
reference throughout; he is following the path of free fall. He is
following the geodesic between the two events O and Q.

Incidentally, do not be misled by the rather unfortunate name:
proper time. It does not mean that somehow this is the actual
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23. World lines for the two twins involved in the so-called ‘twin
paradox’

time, the real time, all other times not being quite right! I reiterate
what I said earlier when first introducing relativistic ideas about
lengths and times. All estimates of distance and of time are tied to
a specific observer’s viewpoint. There is no objective distance or
time interval independent of any observer’s point of view –
nothing that can be regarded as the distance or time interval.

Another point to note is that, although we have introduced the
idea of geodesics in the context of our discussion of the effects of
gravity, it applies universally – to cases not involving gravity. It is
not a question of using ‘maximum proper time’ in one case and
‘shortest distance between two points’ in the other. In the absence
of gravity, the geodesic characterized by maximum proper time

74



G
en

eralrelativity

happens also to have the property of being the shortest spatial
distance.

The crux of general relativity is that matter tells space how to
curve, and space tells matter how to move. Space is no longer to be
regarded as the passive stage on which the actors – material
objects and light – perform their drama. Space itself becomes a
performer.

Now you might be thinking that this is all very well: replacing the
notion of gravitational forces with that of a curved space or
spacetime. But is this not just a matter of personal preference as to
how one chooses to see things? Can one not stick with the
Newtonian idea of gravity forces if one wishes?

In most everyday situations, Newton’s theory holds to a level of
precision that is perfectly adequate. Even when computing the
orbits of satellites it is fine to use the familiar inverse square law of
gravitation. Mathematically, Newton’s theory is much easier to
handle than general relativity. For this reason alone, physicists will
go on talking about gravity forces and will use Newton’s law.
Nevertheless, they know that the general theory of relativity
provides the more accurate predictions and is a superior way of
understanding the physics. Newton’s law, while being a useful
‘recipe’ for solving most problems – those involving weak gravity
and speeds much less than that of light – offers little insight as to
what is really going on. General relativity is not just an optional
geometric reinterpretation of gravity. We caught a glimpse of this
when we pointed out that Newtonian theory did predict a bending
of starlight around the sun, on the assumption that light was made
up of particles. But it gave the wrong amount. General relativity
predicted the right amount.

Another famous test of general relativity was carried out in 1915
and involved Mercury – the planet closest to the sun and therefore
able to explore the sun’s gravity at its strongest. Like the other
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planets, Mercury’s orbit is an ellipse with the sun at one of the
ellipse’s foci, see Figure 24a. The point of closest approach to the
sun is called the perihelion. Normally, according to Newtonian
mechanics, one would expect the orientation of the orbit to remain
unchanged; the perihelion should stay where it is. But it was
known that in fact the perihelion of Mercury’s orbit tended to
change with each successive turn of the planet round the sun
(Figure 24b). This was called the precession of the perihelion.
Most of this movement was easily accounted for in terms of the
gravitational attraction of the other planets in the solar system.
However, it had been noted since 1845 that the actual rate of the
precession differed from that expected by 43 seconds of arc per
century. A tiny amount, certainly. But it was definitely there, and
was worrying because it was unaccounted for. Except that
Einstein’s theory did just that. General relativity required just such
a precession. Einstein was later to declare that, on hearing the
news of the verification of his prediction, he ‘was beside himself
with ecstasy for days’.

More recently, in 1974, Joseph Taylor and his research student
Russell Hulse discovered pulsar PSR 1913+16 to be a member of a
binary system. The pulsar (a form of collapsed star) was in a very
eccentric orbit with another star about their mutual centre of
mass, approaching each other to a distance of 1.1 solar radii at
closest approach and retreating to 4.8 solar radii at their furthest
separation. And as predicted by relativity theory, it was found that
the perihelion is advancing at a rate of 4.2 degrees per year. This is
an advance in a single day equivalent to what Mercury does in a
century.

Another interesting test of general relativity was first proposed
in 1964 by Irwin Shapiro and involved using a powerful radar
source and bouncing radar pulses off a planet. The idea was to
time how long it took for the pulses to travel out to the planet and
back, and thus accurately track the planet’s path. This was then
repeated while the planet was just about to pass behind the sun
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24. According to Newtonian mechanics, a planet such asMercury
should trace out an elliptical orbit. In the absence of any other
gravitating body (other planets), the perihelion should remain fixed,
case (a). But according to general relativity, the perihelion should
precess, case (b)
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25. A test of general relativity based on the time delay of radar pulses
bounced off a planet as the pulses graze the limb of the sun

(see Figure 25). Based on the earlier measurements, where the
planet was in different parts of the sky, one could calculate what
one would expect the reading to be as the radar pulses grazed the
limb of the sun. In fact, there turns out to be a time delay of about
250 microseconds. Passing close to the sun causes a slow-down of
the pulses. This is what is predicted by Einstein’s theory. The
experiment has been carried out using pulses bounced off Mercury
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and Venus, using the planets as passive reflectors. But also using
artificial satellites: Mariners 6 and 7, Voyager 2, the Viking Mars
Lander, and the Cassini spacecraft to Saturn. In the latter cases,
the satellites were used as active re-transmitters of the radar
pulses. The most accurate experiment to date was in 2003 using
Cassini, which was able to verify the prediction to a precision of
one part in 10−5.

Note that the effect we are talking about here involves time
measurements, and so is a demonstration that it is spacetime,
rather than just space, that is curved close to gravitating bodies.

One final point is worth making. We have seen that for all the
various tests of general relativity (the gravitational redshift, the
bending of light, gravitational lensing, radar probing close to the
sun, the precession of the perihelion of Mercury), we were looking
for small effects – slight deviations from what would be expected
on the basis of Newton’s law of gravity. But that should not lull you
into thinking that general relativity is concerned only with small,
nit-picking matters. General relativity accounts for all
gravitational effects, including those that can be approximated by
Newton’s theory. Thus, for example, relativity not only explains the
precession of the perihelion of Mercury’s orbit, but also why
Mercury and all the other planets and satellites are in orbit in the
first place.

Black holes

In Figure 19, we tried to illustrate the way the sun curved
spacetime by showing it as a ball resting in a hollow it had caused
in an elastic sheet. This, of course, is a very crude analogy. Earlier
we noted that when thinking of the curvature of a
two-dimensional space, such as the surface of a sphere, then fair
enough, one could think of it bending into the third dimension.
But when it comes to the curvature of three-dimensional space,
there is no additional dimension to take up the ‘bending’. Instead,
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26. A representation of the way the curvature of space due to the sun
causes the planet to orbit the sun

one must rely on examining the geometric properties of the
three-dimensional space itself. Nevertheless, two-dimensional
representations of three-dimensional space, like that of Figure 19,
can occasionally provide some intuitive grasp of what is going on.
This is especially so if one has a case of spherical symmetry – like
the curvature on the surrounding space produced by the
sun – where any two-dimensional slice through that space (which
passes through the sun) is representative of any other
two-dimensional slice. The third dimension becomes redundant
as it contains no information that is not already available from the
other two. In the illustration, we can then represent the
three-dimensional space by this two-dimensional slice, and use
the illustration’s third dimension to accommodate the ‘bending’.
This is what we did in Figure 19. In Figure 26, we see how the
overall curvature due to the presence of the heavy ball (the sun)
causes the smaller ball (a planet) to move around it in orbit rather
than move off in a straight line.

In Figure 27, we see in more detail the kind of curvature produced
by the sun. Why does it have that shape? The steepness of the
curve at any point depends on its distance from the centre of the
sun, and also on how much gravitating matter there is between the
chosen point and the centre of the sun. As one considers points
closer and closer to the sun, the amount of matter remains the
same (the mass of the sun), but the distance is reducing, so the
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27. A profile of the curvature of space caused by the sun, showing how
the curvature diminishes within the sun

steepness of the curve increases. This carries on until one reaches
the edge of the sun at point R. Moving into the sun’s interior now,
the distance to the centre continues to decrease, but now the
amount of mass between the chosen point and the centre is
reducing – an effect tending to reduce the curvature. In fact, the
sum of these two effects leads to an overall reduction in curvature
such that by the time one has reached the centre of the sun, the
curve has flattened out. This is what one would expect as the sun
exerts no gravity force at its central point. And what is true for the
sun, is true of the other stars, and the planets; they create
curvatures rather like Figure 27.

But again let me emphasize that, although such diagrams might
be helpful in visualizing what is going on, in practice we do not see
three-dimensional space curving off into some other dimension.
Instead, we have to rely on the intrinsic properties of the space
itself. So what does that mean? As a specific example we take the
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case of a spherically symmetric object such as the sun and ask how
it affects the spacetime around it.

We already know something about how time is affected. To an
observer far from the sun, a clock close to the sun appears to go
slow; it is gravitationally redshifted. By how much? Karl
Schwarzschild was the first to solve Einstein’s equations for the
case of a spherically symmetric body. The solution requires a
considerable amount of mathematics, but the end result is fairly
simple: for a distant observer, the rate of the clock appears to be
reduced by a factor of (1 − 2mG/rc2)1/2. Here m is the mass of the
sun, G is the gravitational constant, r is the distance of the clock
from the centre of the sun, and c is the usual speed of light. We
note that for large r, the expression approximates to 1, i.e. when
the clock is far from the sun, it appears to go at its normal rate.
The closer the clock is to the sun, the slower it goes. For stars
heavier than the sun, i.e. with larger mass, m, the effect is greater,
as one would expect.

So much for time. How about space? The Schwarzschild solution
shows that this is affected in the radial direction. Imagine, for
instance, a long line of metre rulers placed end to end extending
from the position of our distant observer down towards the sun.
According to the observer, the rulers appear to be shortened – the
closer a ruler is to the sun, the shorter it is. The factor by which the
ruler is contracted is given by the same expression as we had for
the slowing down of time: (1 − 2mG/rc2)1/2. Again, we see that for
large r the expression approximates to 1 and the ruler appears to
have its normal length. The smaller r, or the greater m, the more
the ruler is contracted.

What does this do to the speed of light? Imagine a light pulse
being emitted from the clock in an outwards direction towards the
observer. It starts out in a region where time has slowed down.
That means everything happening there has slowed down as far as
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the distant observer is concerned. And that includes the speed of
light; it takes longer to cover the distance of each of the metre
rulers on its way out from the sun. But not only is time slowed
down in the region of the clock, space is squashed up in the radial
direction in which the pulse of light is travelling. This means that,
according to the distant observer, for each traversal of a metre
ruler the light has travelled less than a metre. This is a second
factor leading to the slowing down of the light pulse. In effect, the
light is having to ‘drag’ itself away from the sun.

A slowing down of the speed of light? But doesn’t that violate one
of the two postulates upon which relativity theory is founded? No.
The postulate specifically spoke about inertial frames of reference,
and what we are dealing with here is not an inertial frame. In the
curved spacetime produced by gravity, there is nothing to stop the
speed of light assuming a value different from the usual c.

So far we have confined our attention to how the situation appears
to a distant observer. What of an observer in a state of free fall
close to the clock in question? Such an observer is in a local
inertial frame of reference. His immediate surroundings appear
quite normal. The clock is running at its normal rate, the metre
rulers are their normal length, and the speed of light in his vicinity
is c. It is important to recognize that just as a small area on the
surface of a sphere or saddle approximates to being flat, and the
smaller it is, the closer it comes to being flat, so in curved
four-dimensional spacetime, if one considers the situation of a
freely falling observer in a small local region of that spacetime,
then it will appear to be ‘flat’ – meaning that special relativity
applies. Thus the curved spacetime around the sun, for instance,
can be thought of as being made up of a patchwork quilt of tiny
local regions each of which can be dealt with by special relativity.
It is only the distant observer who is able to take in the broad,
extended picture of what is happening to spacetime both near and
far from the sun, and who is able to appreciate its curved features.
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In specifying the amount by which the time appears to be slowed
down according to the distant observer, and the radial distances
are contracted, we spoke of the factor (1 − 2mG/rc2)1/2. It might
have occurred to you to wonder what would happen if r were small
enough that the second term in brackets became equal to 1 and the
expression reduced to zero. Would that not mean that time would
come to a halt and the lengths of the metre rulers would become
zero? Here we need to be careful. The Schwarzschild solution (and
hence the applicability of that factor) applies only outside where
the mass of the sun is concentrated. In other words, beyond point
R in Figure 27. For the sun, the value of r that would make the
factor zero would take one well inside the sun to where only a
fraction of the overall mass m would still be contained within the
sphere radius, r. So for the sun, the factor can never reduce to
zero. However, this is not always the case. There are objects out
there in the cosmos that are so compact that the condition can be
satisfied. This brings us to the fascinating topic of black holes. So,
what are black holes, and how are they formed?

We have seen how stars are powered by nuclear fusion processes.
But it is clear that, like any other fire, one day it will run out of
fuel. What happens then depends very much on how heavy the
star is and thus how strong its gravity. For a medium-size star like
our sun, after burning steadily for 10,000 million years it will
swell up to become a red giant. It will shed its outer layers, while
the core will collapse down to be a small, bright white dwarf. This
core will then fizzle out and become a cold cinder.

A star that has a mass of more than about 8 solar masses ends its
active life with a supernova explosion. Its core collapses down so
much under the influence of gravity that the electrons, normally
found outside the atomic nucleus, are pushed into the nucleus
itself; there they join the neutrons and protons. They then
combine with the protons to form more neutrons, and also
neutrinos (the released neutrinos being responsible for blasting
out material in the explosion). So one is left with a core of
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28. A profile of the curvature of space caused by a black hole

neutrons known as a neutron star. As mentioned earlier, when
dealing with gravitational redshifts, a neutron star typically has a
mass of 1.4 solar masses, and yet is only about 10 kilometres in
radius. The strength of gravity at the surface of a neutron star is
2 × 1011 that of the earth.

If the initial star starts out with a mass greater than about 20 solar
masses, then the supernova explosion results in a neutron star that
would have a mass exceeding 2 solar masses – except that for such
a mass, gravity is so strong that nothing can resist it, and the
would-be neutron star continues its collapse until all the matter is
concentrated down to a point – an infinitesimal region of zero
volume and infinite density. This is the birth of a black hole, so
named by John Wheeler in the 1960s. The phenomenon was,
however, predicted much earlier, in 1939, by J. Robert
Oppenheimer and Hartland Snyder on the basis of Einstein’s
theory.

With regard to the curvature of space caused by a black hole, this
is illustrated in Figure 28. The curve is to be thought of as
continuing down to a singularity at the point where all the matter
is concentrated. Thinking in terms of a gravity force, that force
would approach infinite strength as we near the centre. Anything
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falling into a black hole gets squashed down to a point at the
centre. At least, our current physics would lead us to such a
conclusion. The worry is that our physics cannot handle
singularities. We know that when dealing with very small objects
of subatomic size, quantum theory comes into play – and we do
not know how to marry up quantum physics with relativity theory.
So, nature might have a surprise in store for us. Nevertheless, we
have no alternative at the present time but to go along with the
conclusion that everything gets squashed down to a point.

That being the case, it follows that unlike the sun, for such an
object there will be a distance from the centre such that the
expression (1 − 2mG/rc2)1/2 reduces to zero. This will be at a
radius, k, given by

k = 2mG/c2 (13)

k is called the Schwarzschild radius. It delineates a spherical
surface called the event horizon, centred on the concentration of
mass. The significance of this distance can be illustrated in the
following way. Imagine a spacecraft falling towards the black hole.
As it approaches the event horizon, it appears to the distant
observer to slow down. This is the combined effect of time slowing
down and radial lengths being contracted the closer one is to the
centre. At the event horizon itself, the craft appears to come to a
halt. It appears to be indefinitely suspended there. This is because
the light from the craft is having to slowly drag itself away
from the region. At the event horizon itself, it takes an infinite
time for the light to get back to the observer – hence the object
appears to be stationary. Not that in practice it will appear that
way for very long. Although the craft appears to the distant
observer to have stopped at the event horizon, the craft itself has
actually passed through that region quite quickly and carried on
into the black hole itself. It emitted only a limited amount of light
in its brief transit through that region. So, once that light has
crawled out to the observer, there is none left, and the intensity of
the light rapidly diminishes and the image fades away.
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One has to stress that this is how things appear to be from the
point of view of the distant observer. How do things appear from
the point of view of the astronaut inside the craft? As far as she is
concerned, as she falls towards the black hole, she is initially in a
local inertial frame of reference and her immediate surroundings
appear normal. There is nothing untoward about time, or
distance, or the speed of light. She can pass through the event
horizon unaware that from now on her fate is sealed. There is
nothing there to indicate that she is passing a point of no return.
From now on there is no escape for her. Once inside the event
horizon, everything continues in an inexorable plunge towards the
centre of the black hole. And that is true of light as it is for
anything else. Black holes emit no light; hence their name.

The astronaut and her spacecraft end up squashed to a point
at the centre. And it is important to recognize that this kind of
squashing is nothing like the length contraction phenomenon we
have come across in the context of special relativity. You will
recall that with the length contraction the astronaut in her
spacecraft did not feel a thing because all the atoms of her body
were contracted and so did not need the same amount of space
to fit in. Falling into a black hole, however, would be a totally
different matter. Falling feet-first, she would feel her body being
stretched lengthwise, as if on a torture rack. This is because her
feet, being closer to the centre, experience a stronger gravitational
field than her head, which is further away. While this stretching
is going on, her sides get progressively squashed in. Ultimately
she ends up crushed to a point – and very definitely ends up
dead!

For a star which ends up as a black hole with a mass, say, ten times
that of the sun, equation 13 shows that k would have a value of
10 kilometres. At this distance from the centre, the tidal forces
acting across a falling astronaut’s body at the event horizon would
already be colossal. It would be equivalent to being placed on a
torture rack where one’s feet were attached to a hanging weight of
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one billion kilograms. Such is the case for a stellar black hole – a
black hole formed through the collapse of a star.

But that is not the only way black holes form. It is now believed
that most galaxies have a black hole at their centre – a galactic
black hole. These are formed through stars near the centre of the
galaxy being drawn together, colliding, merging, and collapsing
down to create a massive black hole. In 1974, our own Milky Way
Galaxy was found to have a black hole at its centre with a mass of
about 3 million solar masses. Most other galaxies appear to
contain supermassive dark objects at their centres which are
believed to be black holes. Some of these have already swallowed
up billions of stars.

From equation 13 we see that the event horizon radius increases in
proportion to the mass. The tidal force at the event horizon is
known to decrease with the square of the mass. So even for a
relatively small galactic black hole containing 1 million solar
masses, the tidal force at the Schwarzschild radius would be
reduced by a factor of 1012, meaning that the astronaut would pass
through the event horizon hardly affected (though this, of course,
is but a temporary respite – the strong tidal forces kicking in at
shorter distances).

We have said how stellar black holes are formed when
supermassive stars collapse. But one thing we have not yet
mentioned is the fact that most stars, like planets, possess angular
momentum – they spin about an axis. Angular momentum has to
be conserved. So, although some might be lost through the
material ejected during the supernova explosion accompanying
the collapse of the star, the black hole itself is expected to have to
take up much of the original angular momentum. This
complicates matters. The Schwarzschild solution of Einstein’s
equations no longer holds. It was not until 1963 that Roy Kerr was
able to produce the solution for a rotating black hole. The Kerr
solution comes up with an especially interesting result: the
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rotating black hole drags the nearby spacetime itself around like a
swirling whirlpool. An object initially falling directly towards the
centre of the black hole finds itself gradually swept up into this
rotating movement. For a rotating black hole, a falling object first
passes through a surface known as the static limit. This marks the
boundary of a region called the ergosphere which extends down to
the event horizon. The ergosphere is such that the tide of rotating
spacetime is so strong that nothing – not even an imaginary
spacecraft with an infinite rocket thrust – can remain stationary
but must orbit the centre of the hole. Only outside the static limit
is it conceivably possible for a spacecraft, firing its rockets, to
remain stationary.

A space mission named Gravity Probe B is currently trying to test
out the prediction of frame-dragging. It consists of four
ultra-precise gyroscopes. In free space such gyroscopes would
maintain the direction of their axis of spin indefinitely. The probe,
however, is in orbit about the earth. The Schwarzschild warping of
space caused by the earth’s gravity should cause the alignment to
change by 0.0018 degrees per year. On top of that, there should be
an additional tiny effect due to frame-dragging amounting to no
more than 0.000011 degrees per year. That is the equivalent of
viewing a human hair from a distance of a quarter of a mile. At the
time of writing, we are awaiting results.

When objects fall into a black hole, they lose their identity. For
example, being crushed to a point, they no longer have any volume
or distinguishing shape. Not that they entirely go out of existence.
Whatever mass they had is added to what was already there. What
else is retained? The mass of the black hole is one characteristic.
Another is angular momentum. Electric charge is conserved, so
whatever electric charge was carried by the falling object is
retained and added to the total charge on the black hole. And that
is it – just mass, angular momentum, and electric charge. All other
features of the ingredients that originally went to make up the
hole are gone forever.
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But, you might be thinking, this is all very well, what is the
evidence for the existence of black holes? After all, there is one
glaring problem in finding black holes and that is that they are
black – they emit no light, and moreover swallow up any light that
might otherwise reflect off them. They are to all intents and
purposes invisible.

Recall the film of the invisible man. One could not see him
directly, but one could see the effects he produced on his
surroundings. And that is exactly the approach one adopts when
hunting for black holes. One looks for a star that is undergoing
periodic changes in the frequencies of the light it emits. This will
be due to the Doppler shift as the star first moves away from us
and then comes towards us. This motion is characteristic of a
binary system consisting of two stars orbiting about their mutual
centre of mass. Usually one can see both stars. But occasionally
there appears to be only the one; its companion is unseen. From
the motion of the visible star one can work out the mass of the
companion. If this exceeds about 3 solar masses, then it is a
candidate for a black hole. The case is strengthened if the visible
star happens to be a red giant, i.e. a star that has a widely
distended structure. Sometimes one can see the outer layers
of the visible star being drawn across to the invisible companion
and emitting X-rays as they are sucked rapidly into the black
hole.

In 1972, Cygnus X-1 was found by Tom Bolton to exhibit just such
behaviour. The invisible partner was estimated to have a mass 7
times the solar mass. It was a source of X-rays that fluctuated
rapidly. The flickering was typically over periods of a hundredth of
a second. This period indicated that whatever was emitting the
X-rays could not be very big. Light travels only 3000 kilometres (a
quarter of the earth’s diameter) in such a time interval, so that
appears to set an upper limit on the size of the object emitting the
X-rays. In other words, the region is small – consistent with the
emission being from the immediate vicinity of a black hole. At the
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time of writing, there are about 20 known examples of binaries
that are best explained in terms of one of the companions being a
stellar black hole – some examples being even stronger candidates
than Cygnus X-1.

How about the evidence for the supermassive black holes at the
centre of galaxies? The stars of a galaxy rotate in orbit about the
centre of the galaxy. Initially one assumed that what was keeping
each star on course was the gravitational attraction of all the other
stars that were seen to be closer to the centre than the orbiting
star. However, it was discovered that stars close to the centre were
orbiting much, much faster than expected on this basis. From this,
one concludes that, in order to provide enough attraction to keep
the orbiting stars on track, the gravitational mass close to the
centre must far exceed what could be accounted for in terms of
visible stars. This has led to the conclusion that at the very centre
of the galaxy there must be a supermassive black hole which has
swallowed up many stars and hence rendered them invisible.

A second piece of evidence pointing to the existence of
supermassive black holes is provided by active galaxies. These
look like typical galaxies except that they have a small core of
emission embedded within them. The output from this
core – infrared, radio, ultraviolet, X-rays, and gamma rays – might
be highly variable and very bright compared to the rest of the
galaxy. This can be explained on the basis of material being
accreted by a small central zone – a black hole – with the release of
large amounts of gravitational energy.

Added confirmation for the existence of such black holes comes
from quasars. These are exceedingly bright objects a long distance
from us. The further away one looks, the more quasars one sees.
As is well known, the further away an astronomical object is, the
further back in time we are looking (because of the finite time it
takes for light to reach us). Quasars are believed to be galaxies in
an early stage of their evolution. As with the active galaxies, the
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source of the quasars’ exceptional brightness was a mystery for
some time. But then a connection was made between quasars and
the formation of black holes at the centre of the newly created
galaxies. Indeed, it is now generally believed that, even though
active galaxies and quasars look very different to us, they are really
the same phenomenon viewed differently. Quasars are simply
active galaxies that are very distant from us.

In conclusion, the weight of evidence for the existence of
supermassive black holes at the centre of galaxies is considered to
be overwhelming.

Having dealt with stellar and with galactic black holes, one ought
briefly to mention a third possibility: mini black holes. We have
seen that for an object with mass less than about 2–3 solar masses
its gravity is not strong enough to compress it down to a black
hole. However, less massive objects could become black holes if
subjected to a sufficiently powerful external pressure. In 1971,
Stephen Hawking suggested that under the severe pressure
conditions and turbulence of the early Big Bang, perhaps
high-density fluctuations did get so compressed as to form mini
black holes. These might have had only the mass of, say, a
mountain, in which case its event horizon would be no bigger than
the size of a subatomic proton. There could be many such objects
still around today. However, there is no evidence for their
existence.

Likewise, there is no evidence for white holes – another theoretical
possibility allowed by Einstein’s equations. Just as a black hole is a
region of space from which nothing can get out, so a white hole
would be a region from which one wouldn’t be able to stop things
spewing out! Another wild speculation, much loved by sci-fi
writers, is the worm hole. This is the idea that once an object falls
into a black hole it gets squirted along a tunnel and out of a white
hole somewhere else. This could be somewhere else in this
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universe, or in another universe altogether. Again, there is no
evidence for any such thing.

One last point to note about black holes. Once formed, what
happens to them? Do they just stick around forever? For a time
they carry on accreting matter and become more massive. But
this must come to an end when it has gathered in all the material
available to it. One expects that eventually a galactic black hole
will have swallowed up all the stars in its galaxy – a process
taking of the order 1027 years, depending on the galaxy’s initial
size. Galaxies belong to clusters of galaxies, our own Milky Way
Galaxy being one of over 30 members of the Local Cluster. The
galaxies are constantly moving about while being bound together
by their mutual gravity – somewhat similar to the way a pack of
dogs tethered to a stake are free to move about, but within a
confined region. As they move the galaxies are constantly
emitting energy in the form of gravitational waves (a subject we
turn to in the next section). This in turn implies that all the
members of a particular cluster will eventually end up together in
a black hole. For the Local Cluster, this should take a period of
1031 years.

It was originally thought that that was the end of the story. After
all, nothing can get out of a black hole, and there is nothing left to
go in. But then in 1974, Stephen Hawking came up with the
astonishing idea that black holes ought to shine – admittedly very
dimly, but nevertheless they ought to emit energy. The reason for
this arises out of quantum theory – and therefore, strictly
speaking, takes us beyond the remit of this little book. But allow
me to sketch briefly how it comes about.

We have already mentioned that to a physicist, empty space – the
vacuum – is not empty at all (for one thing, it can get curved).
According to quantum theory, the vacuum is constantly, and
everywhere, producing pairs of what are called ‘virtual particles’.
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These are particle–antiparticle pairs, or pairs of photons (i.e.
bundles of light energy). This production of particles requires
energy – for example, for the production of the particles’ rest
masses. But quantum theory allows energy fluctuations to take
place; energy can be ‘borrowed’, provided that it is paid back
promptly. So, these pairs of particles pop briefly into existence
before recombining and going out of existence once more.
Hawking suggested that when this process occurs close to the
event horizon of a black hole, one of the virtual particles might fall
into the black hole releasing gravitational energy (in just the same
way as a real particle does when it falls into a black hole). This
released energy might be sufficient to pay back the ‘borrowed’
energy without the second virtual particle having to pay back its
own energy. This second particle, or photon, just outside the event
horizon, is then free to escape the black hole as a normal particle
or photon would. Thus, Hawking was led to the conclusion that
black holes ought to emit a weak form of radiation. In other
words, black holes are not really black. This has come to be known
as Hawking radiation. It is so weak that it has yet to be observed.
A black hole of stellar mass, for instance, would emit radiation
equivalent to it having a temperature of only 10−7 K above
absolute zero. Nevertheless, most scientists are now convinced
that this is how black holes behave. That being the case, it
becomes clear that black holes will continually emit energy, and
in the process lose mass. In other words, they will evaporate in
much the same way as a puddle of water does on a hot day. The
smaller the black hole, the more extreme the curvature variation
in its vicinity, and the easier it will be for the members of the
virtual pair of particles to become separated – one falling into the
hole and the other escaping. Hence, the smaller the hole, the more
intense the Hawking radiation.

So what is the ultimate fate of a black hole? Black holes of stellar
mass are expected to evaporate in 1067 years, those of galactic
mass in 1097 years, and those formed from the amalgamation of all
the members of a cluster of galaxies in 10106 years.
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Gravitational waves

In the same way as Maxwell’s theory represents our understanding
of electromagnetism, so Einstein’s general theory of relativity is
the expression of our understanding of gravity. Maxwell was able
to predict, on the basis of his theory, that there should be
electromagnetic waves – ripples of electric and magnetic forces
spreading out through space. They would be generated by the
acceleration of electric charges. Visible light, infrared, ultraviolet,
radio waves, X-rays were all examples of such electromagnetic
waves; they all travel at the speed of light, differing solely in their
wavelength. In the same way, Einstein was able to predict, on the
basis of his gravitational theory, that there should be gravitational
waves; these would be created by the acceleration of massive
bodies. We earlier saw that a massive body such as the sun can be
thought of as sitting in an indentation in the fabric of spacetime
(see, for example, Figure 26). Similarly, gravitational waves can be
envisaged as ripples passing through the spacetime fabric. Like
electromagnetic waves, they will travel at the speed of light.

Detection of such gravitational waves is no easy matter. This is
because the effects they produce are expected to be tiny. In the
electromagnetic case, there is no problem. Whirling charged
particles around the closed circuit of a particle accelerator (thus
subjecting them to centripetal acceleration) readily produces
electromagnetic radiation – the so-called synchrotron radiation.
For electrons, the loss of energy under such circumstances is so
pronounced that, in order to reach the highest energies, it is
preferable to accelerate them down a tube that is straight, such as
the 3-kilometre accelerator at Stanford, California, rather than
have them repeatedly guided round a closed circuit.

In the gravitational case, even if one were to whirl a lump of steel
weighing several tons at rotational speeds such that it is in danger
of flying apart under the centrifugal forces, it would still emit only
something like 10−30 Watts of energy in the form of gravitational
waves.
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For this reason, we have to look beyond the laboratory, to
astronomical objects, for stronger sources of gravitational
radiation. The first, somewhat indirect, evidence for gravitational
radiation came in 1978. Recall how Hulse and Taylor, four years
earlier, had discovered a pulsar that was a member of a binary
system. We saw how it was to provide the best test yet for the
precession of the perihelion of an orbiting body. There was now to
be a second payoff – one that earned its discoverers the Nobel
Prize in 1993. Pulsars are neutron stars that emit jets of radiation
from their magnetic north and south poles. These jets are then
whirled around as the body spins. If we on earth happen to lie in a
direction scanned by this rotating beam, then we get a series of
regular pulses – much as a ship at sea receives pulses of light from
the rotating beam put out by a lighthouse. The beam in this case is
of radio waves. What Hulse and Taylor found was that the basic
period of this pulsar (0.05903 seconds) was extremely stable
(increasing by no more than 5% per one million years), and so
provided in effect a very precise clock. Nevertheless, superimposed
on this regular beat was a cyclical variation. This was interpreted
as a Doppler shift arising from the way the pulsar moved towards
us and then away from us while orbiting its unseen companion.
The orbiting period was found to be about 8 hours. What was
really interesting, however, was that this orbiting period was
progressively getting shorter. Not by much – only 75 millionths of
a second per year – but over the 4-year observational time, the
effect was shown to be definitely there. In other words, the pulsar,
as it orbited its companion, was losing energy, and was following
an ever tighter spiral. This was recognized to be due to it radiating
gravitational waves. The calculated rate from Einstein’s theory was
in agreement with observation to within one half of a percentage
point.

But of course, what we would like to do is detect gravitational
waves directly by equipment located in the laboratory. Such
equipment is shown schematically in Figure 29. The idea is to split
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Laser Beam
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Photo
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29. A schematic drawing showing the layout of equipment intended to
detect gravitational waves

a laser beam so as to send out two beams in directions at right
angles to each other. Having travelled down evacuated tubes for
several kilometres, they are reflected back to the origin, where
they are allowed to combine and interfere with each other. The
idea is that a gravitational wave passing through the detector
would cause one of those distances to be increased and the other
decreased. This should lead to a disturbance to the way the beams
combine – an effect that can be observed with a photo detector.
Such an apparatus is called an interferometer. In order to increase
the equipment’s sensitivity to tiny changes of distance, each beam
is made to traverse its return journey about 100 times. By this
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technique it is hoped that one might be able to detect, for instance,
the gravitational waves emitted during a supernova explosion. Not
that a perfectly symmetrical supernova explosion would be
expected to emit such waves. Fortunately, however, they are not
expected to be perfectly symmetric. Stars which end their lives in
one of these explosions are expected to be spinning. Furthermore,
some of them will be members of binary systems. Thus, in
practice, supernova explosions are expected to be asymmetric, and
will thus emit a pulse of gravitational waves.

The trouble with waiting for supernova explosions is that they do
not happen often. In our Milky Way Galaxy they are expected to
occur on average about once in 30 years. That means there is a
good chance of an astronomer spending his whole career waiting
for one and ending up with nothing. For this reason, the search
has to be extended to other nearby galaxies. But this in turn
means, of course, the strength of the signal one is hoping to detect
will diminish (the intensity of the signal falling off as the inverse
square of the distance). It is the need to be able to detect small
signals from other galaxies that sets the degree of sensitivity
required of one’s equipment. The aim is to detect changes of
length of about 1 part in 1021 or the equivalent of one-thousandth
the size of a proton. Currently there are several of these large
interferometers; they are run by US, French-Italian,
German-British, and Japanese teams. We still await the first
positive observation of gravitational waves.

And what of the future? There are already plans to launch an
interferometer into space. This would not only have the advantage
of being free of the random disturbances here on earth that set
limits to sensitivity, it will be able to increase greatly the return
path lengths that the laser beams have to travel. The Laser
Interferometer Space Antenna (LISA) project envisages three
mirror-carrying space stations positioned some five million
kilometres from each other. Whereas the equipment currently in
operation can, with return paths measured in terms of several
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kilometres, detect gravity wave frequencies of roughly 100 Hertz
and more, the extended arms of LISA would allow the detection of
much higher frequencies, say, one milli-Hertz. That would allow it
to probe the gravity wave spectrum expected to be of interest in
investigating the very earliest stages of the universe’s
evolution – what we shall in the next section be calling ‘inflation’.
At the time of writing, the project awaits funding. The earliest
launch date would be 2017.

The universe

Beginning in 1917, Einstein and others began applying general
relativity to the universe as a whole. We have already seen from
Figure 26 how a massive object, such as the sun, causes a local
dimple-like curvature of spacetime. It is this that governs the sun’s
gravitational influence on the motion of the planets. But so far we
have given no consideration to the possibility of spacetime having
a general, large-scale curvature. As an analogy, consider a
mattress. People lying on it will each cause their own indentation.
But what if the mattress has an overall sag in the middle? Those in
the bed will tend to end up together in the middle. On the other
hand, if the mattress has been overstuffed, and people have been
in the habit of sitting on the edge of the bed wearing down the
springs there, the overall curvature might tend to make the
occupants roll away from each other. Of course, the third choice is
that one has invested in an expensive orthopaedic mattress which
remains essentially flat (supposedly very good for us, but
rock-hard and uncomfortable). One expects spacetime to behave
in one of these three ways. Not only will massive objects cause
local dimples, but the average mass and energy density will cause
an overall, general curvature of spacetime. The equations that deal
with this are exceedingly complicated, to the extent that I will not
be showing them. Suffice to say, that they only become
manageable in the special case where the distribution of matter is
both isotropic (the same in all directions), and homogeneous (the
same density everywhere). Even so, we shall content ourselves
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with just a descriptive account of this case. The assumption that
our universe is isotropic and homogeneous goes under the name
the cosmological principle. But is that how the universe is? At first
sight it certainly does not appear so. The Solar System is clearly
not homogeneous, nor the Milky Way Galaxy to which it belongs.
Nor is the cluster of 30 or so galaxies forming the Local Cluster.
There are many other clusters, some consisting of several
thousand galaxies. Although the stars within a galaxy, and the
galaxies within stars, move relative to each other, they are
gravitationally bound – they stay together. Even clusters of
galaxies are loosely associated in superclusters. These can take the
shape of extended filaments or two-dimensional curved surfaces
enclosing voids which contain very little in the way of galaxies.
These voids can be as much as 200 million light years across. So
even up to this scale, the universe is far from homogeneous.

Fortunately, such distances still represent only a fraction of the
size of the observable universe (13.7 billion light years). Thus, one
feels justified in accepting the cosmological principle. This being
the case, we are faced with three possible alternatives for the
overall curvature of three-dimensional space:

(i) It might be flat, meaning that, far from any gravitating bodies,

ordinary Euclidean geometry would apply. The sum of the angles

of a triangle would add up to 180◦, and the circumference of a

circle, C , would be equal to 2 × the radius, r. Such a space would

presumably be infinite in extent.

(ii) Alternatively it might have what’s called positive curvature. The

two-dimensional analogy of this would be a sphere (see

Figure 20). The sum of the angles of a triangle would exceed 180◦,

and for a circle, C < 2r. In this case (like the sphere) the universe

would be finite in size and closed. This means if one took off in a

rocket in a given direction – say, vertically straight up from the

North Pole – then after travelling a finite distance, maintaining

the same course, one would find oneself back where one started –

arriving back at earth at the South Pole. This would be analogous
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to a fly crawling over the surface of a sphere in a given direction

and finding that it had ended up back where it started.

(iii) The third possibility is that three-dimensional space might

exhibit negative curvature. The two-dimensional analogy in this

case would be the saddle (see Figure 21). The angles of a triangle

would less than 180◦, and for the circle, C > 2r.

In considering these various possibilities, one might be tempted to
think that the correct one is obvious: we know that the angles of a
triangle equal 180◦, and for the circle, C = 2r, so space is flat.
However, we must remember that even with the analogies of the
sphere and the saddle, if we deal only with very small circles, those
curved surfaces approximate to being flat. In considering the
curvature of the universe as a whole, the only triangles and circles
we deal with are tiny and so would be expected to be close to the
flat case. In talking of deviations from Euclidean geometry we
have to think of triangles, say, that are those involving three very
distant galaxy clusters. Only on that kind of scale might we expect
to see noticeable departures from flatness.

Which of the three types of curvature applies to the universe
depends on its contents. But before coming to that, there is a
further observation we must take into account. We have already
noted that, according to the cosmological principle, the density of
matter everywhere is assumed to be the same throughout space.
However, the density does not remain the same over time. As was
first observed by Georges Lemaître, in 1927, the universe is
expanding. The galaxy clusters are retreating from us. The further
away a cluster, the faster it is moving. A cluster that is twice as far
away as another is moving twice as fast. This is summarized by
Hubble’s law, proposed by Edwin Hubble in 1929:

v = H0r (14)

where v is the velocity of recession of the cluster, r is its distance
from us, and H0 is the Hubble parameter with a measured value of
about 2 × 10−18 sec−1.
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This recessional motion is deduced from the way that the spectral
wavelengths of the light emitted by distant clusters is shifted
towards the red end of the spectrum – the so-called redshift. In
other words, the wavelengths are stretched out. Initially this was
interpreted as a Doppler shift, in much the same way as the sound
waves given out by the siren of a speeding police car are shifted to
lower frequencies when the car is moving away from us. However,
the modern interpretation of the redshift is that it arises from the
expansion of space itself. As mentioned briefly before, it is not a
case of the cluster moving away from us through space. Instead,
we envisage the space between us and it as progressively
expanding, and in so doing, carrying the clusters away from us on
a tide of expanding space. The light does not start out its journey
towards us with a wavelength increased by the cluster’s motion;
rather, it starts out with its normal wavelength, but subsequently
this is progressively stretched by the expansion of the space
through which it is travelling.

It is important to note that when we talk of space expanding, we
do not mean that all distances expand. If they did, we would have
no way of verifying such an expansion. The binding forces holding
together such objects as atoms, the Solar System, galaxies, and
clusters of galaxies are sufficiently strong as to overcome the
underlying tendency for space to stretch; they thus remain the
same size. Not so the weak attraction between the clusters. Here
the space-stretching effect is dominant and progressively moves
the clusters apart.

This type of recession, where the velocity of recession is
proportional to distance, is exactly what one would expect if at
some time in the past all the contents were contracted to a point.
There was an explosion which blew them apart. This is called the
Big Bang. The recessional motion we see today is in the aftermath
of that explosion. From the observed separation of the clusters at
the present time, and the speeds with which they are travelling, we
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can calculate how much time would be needed for them to have
travelled that distance at that speed. That is how one arrives at the
conclusion that the Big Bang occurred 13.7 billion years ago.

Hubble’s law applies well over moderate distances. Deviations,
however, are expected on the largest scale. There is the possibility
that the expansion rate will vary over time. Indeed, it was
originally anticipated that, because of the mutual gravity operating
between the clusters, they would be slowing down. If the average
density was sufficiently great, this mutual attraction ought
eventually to slow the clusters to a halt. From then onwards, they
would be brought together once more in a Big Crunch. There
would be a finite duration between Big Bang and Big Crunch. Not
only that, but such a high density would lead to space having a
positive curvature, and it would be unbounded but of finite size
(like the surface of the sphere in the two-dimensional case).

Of course, with the universe expanding and the distances between
clusters increasing, it would be expected that the mutual gravity
between them would be reducing. If the density of matter is low,
such that the mutual gravity has essentially dropped to zero with
the clusters still moving apart, then the expansion would go on for
ever. In this case we would have negative curvature and a universe
infinite in extent.

In between these two extremes lies the so-called critical density
case. This is where the gravitational attraction essentially drops to
zero as the clusters asymptotically approach zero recessional
velocity. For this case the geometry is flat. At the current stage of
development of the universe, the critical density would have a
value of about 10−26 kg m−3 – equivalent to about 10 hydrogen
atoms per cubic metre.

Attempts to measure the rate of deceleration involve observations
of the furthest galaxy clusters. There is no difficulty measuring the
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extent of the redshift. However, there are considerable problems
in gaining reliable estimates for the distance to the cluster. For this
reason, observational measurements were unable for a long time
to gauge the extent of the deceleration and hence distinguish
between the three possible models. Then in 1998 came the first
surprising indication that the distant clusters were not
decelerating at all; they were speeding up! This completely
unexpected result revealed the existence of a hitherto unknown
type of force – one that acted in the opposite direction to the
mutual gravity between clusters, and moreover, at long distances
dominated. We shall have more to say about the source of this
force later.

As mentioned earlier, the overall curvature of space depends upon
the contents of the universe. It was the Russian physicist
Alexander Friedmann in 1922, and independently the Belgian
physicist and priest Georges Lemaître in 1927, who, using
Einstein’s theory, developed the equations linking the curvature of
space to its source. There are essentially two sources of the
curvature of the universe. The first is the average mass or energy
density of the contents of the universe. Here we recall the insight
offered by the special theory of relativity that mass and energy are
equivalent through the equation E = mc2. An object can be
considered to have energy in the locked-up form of rest mass, plus
kinetic energy by virtue of its motion. But it is not just matter that
has energy. Electromagnetic radiation has energy, as do
gravitational fields. So in this context we have to take note of the
different kinds of energy there might be. So energy density is the
first term in the expression for the source of spatial curvature. The
second is referred to as pressure and arises out of the way clusters
are moving away from each other. This concerted motion gives rise
to an outward momentum flux which, like energy density, has a
contribution to make to the curvature of space. The more
important term is the energy density, and that is the one we shall
now concentrate on.
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So, what do we find? Is the energy density equal to, greater
than, or less than the critical value? Adding up the contributions
of the visible stars contained in the galaxies, we find it equivalent
to about 4% of the critical value. This in itself would indicate
that the curvature of space is negative, space is infinite in extent,
and the expansion will go on for ever. However, we must not be
hasty. The sun, like the other stars of the Milky Way Galaxy, are in
orbit about the centre of the galaxy, held on course by the
gravitational attraction exerted by all the matter that is closer in to
the centre than ourselves. The trouble is that, when we estimate
the total mass of those stars, including those swallowed up in the
black hole at the centre of the galaxy, we find there is not sufficient
to exert a gravitational pull strong enough to keep us on our orbit.
The conclusion has to be that there is much more matter in the
galaxy than that which can be accounted for by the stars. We call
this unseen component dark matter. What it consists of is
uncertain at present, though it is believed not to be the type of
matter with which we are familiar – electrons, neutrons, and
protons.

Next we note that the galaxies are gravitationally bound together
in clusters. Although such galaxies do not orbit each other in the
regular way that stars orbit the centre of their galaxy, nevertheless,
the speeds with which they move about within the cluster, without
escaping the pull of the other members of the cluster, allows us to
estimate the overall mass of the cluster. This comes out to be more
than the sum total of the masses of the galaxies themselves, even
allowing for the dark matter contained in those galaxies. This in
turn implies that there is additional dark matter between the
galaxies. All in all, it is estimated that the total of all the energy
bound up in matter, both visible and dark, amounts to about 30%
of the critical density.

Finally, in compiling this inventory of contributions to the overall
energy density of the universe, we must take note of the recent
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discovery that the expansion of the universe is accelerating and
why that should be so. Such an acceleration is attributed to an
energy density characteristic of the vacuum. At first it seems odd
to attribute anything to ‘empty space’. But we have already noted
that to a physicist, empty space is not to be thought of as nothing.
We have already seen how it can be curved, how it can carry galaxy
clusters along on a tide of expanding space, and how pairs of
virtual particles can fleetingly pop into existence out of the
vacuum. This is a possibility allowed by Heisenberg’s uncertainty
principle. One of its consequences is that at any point in time it is
impossible to specify precisely what the energy is. In particular, we
cannot specify that the energy of the vacuum is zero – precisely
zero. This allows the virtual particles to borrow energy on a
temporary basis, thus providing them with the energy to produce
their rest mass, and hence come into existence. Thus the vacuum
is regarded as a seething population of particles coming into
existence for short periods of time before disappearing again. This
phenomenon gives rise to an average fluctuating energy density
for the vacuum – what we now call dark energy. It adds its own
contribution to the total energy density of the universe. Like the
other types of energy, it further increases the overall curvature of
space. Where it differs from the other sorts of energy is the way it
affects the motion of the galaxy clusters. Whereas the other types
of energy give rise to a gravitational attraction, this one gives rise
to a repulsion – the repulsion that is responsible for the
acceleration of the expansion of the universe.

It is worth noting in passing that in 1917 Einstein himself for a
time entertained a related idea. He, like everyone else at the time,
was under the impression that the universe was essentially static
(the Hubble expansion had yet to be discovered). He therefore
needed, in effect, a repulsive force to counter the gravitational
tendency to pull all the matter of the universe together. This led
him to include in his equation an extra term, called the
cosmological constant, denoted by �. This he was later to regret
because otherwise he could have predicted that the universe was
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expanding (this being the only other way of keeping the galaxies
from coming together).

Although the existence of dark energy has only recently been
recognized, it is destined to play the dominant role in the future of
the universe. The dark energy density, being a characteristic of the
vacuum, remains constant throughout the expansion of the
universe. Other forms of energy density, such as those due to
matter and to radiation, decrease with the expansion. At first it
was the energy density associated with the latter which
dominated, and the expansion slowed down. But now those
contributions to the overall energy density have dropped below
that due to dark energy. As a result, the initial slowing down of the
expansion has now been replaced by the observed acceleration due
to the dark energy (see Figure 30 where we plot R, a measure of
the scale of the universe, against time, t). This acceleration is
expected to continue into the future.

So, how do we summarize all this? Our current best estimates for
the various contributions to the energy density, in terms of
fractions of the critical density, are as follows:

Ordinary matter in the form of stars 0.04 ± 0.004

Dark matter 0.27 ± 0.04

Dark energy 0.73 ± 0.04

TOTAL DENSITY 1.02 ± 0.02

That the final result comes out to be so close to the critical value
requires explanation. This is because we have to realize that if in
the immediate aftermath of the Big Bang the density had been
slightly different from the critical value, that difference would by
now have become enormously multiplied. If, for example, it had
been slightly less than critical at the start, then the expansion over
the next short time interval would have been greater than that
appropriate to the critical density. That in turn would mean a
larger volume to be occupied by the energy than would have been
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R

30. The parameter,R, related to the size of the universe, is plotted
against time elapsed since the Big Bang. At first, the rate of increase of
R slows down because of the gravitational attraction between the
galaxy clusters. But at later times the contribution due to dark energy
dominates, and the rate of increase of R accelerates

so for the critical case. This reduces still further a density that was
already too low. Thus the shortfall in density escalates. For
example, it has been estimated that if the density today had been
found to be 30% of critical, then that could be traced back to a
shortfall of only one part in 1060 at 10−43 sec after the instant of
the Big Bang.

In view of these considerations, it was recognized, even before the
recent discovery of the contribution due to dark energy, that the
density today was remarkably close to critical. In 1981, Alan Guth
came up with a likely explanation of this. He introduced the idea
that shortly after the Big Bang there was a period of exceptionally
rapid expansion called inflation. The universe increased in size by
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a factor of 1030 in a period of 10−32 sec. Whatever the curvature
might have been before inflation, afterwards it would have been
rendered flat. The situation was similar to a balloon being blown
up. Although it might have been wrinkled to begin with,
afterwards, if the expansion has been great enough, any small area
of the surface will now be essentially flat. In the same way, our
observable universe – that part of the entire universe that lies
within 13.7 billion light years of us and thus from which we have
been able to receive light emitted since the Big Bang – is but a tiny
part of the overall universe. The observable universe is therefore
effectively flat.

The conclusion is that, from among the various possible
geometries general relativity allows, our universe has a flat space;
Euclidean geometry holds. However, spacetime is not flat. Because
space is expanding with time, the time component is to be thought
of as ‘curved’. In this it differs from the spacetime of special
relativity, where not only space but also spacetime is considered
flat.

In conclusion, we have seen how Einstein’s special theory of
relativity allows us to understand the behaviour of nature’s
smallest subatomic constituents as they fly about at speeds close to
that of light, and how his general theory of relativity provides the
essential language and tools for understanding the universe as a
whole. Taken together, a remarkable achievement indeed.
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